1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
use std::collections::HashMap;
use fnv::FnvBuildHasher;
// =============================================================================
// Value
// =============================================================================
// Types
/// The [Values] type is used as the source of content during template
/// expansion, and is a logical map of keys to typed [Value] (which may or may
/// not be present during expansion).
#[derive(Clone, Debug, Default, Eq, PartialEq)]
pub struct Values {
values: HashMap<String, Value, FnvBuildHasher>,
}
impl Values {
/// Adds a new [Value] to the [Values] collection and returns the modified
/// collection to allow for chaining of calls during construction. Values
/// may be any type which implements `Into<Value>` - this will generally be
/// a concrete [Value] but may be your own type for which this trait has
/// been implemented.
///
/// For clarity, it may be better to implement a suitable iterator trait for
/// your custom type and pass it to the relevant [Value] construction
/// function, as this will make the shape of data produced more obvious for
/// anyone reading the code.
#[must_use]
pub fn add(mut self, key: impl Into<String>, value: impl Into<Value>) -> Self {
self.values.insert(key.into(), value.into());
self
}
/// Gets the [Value] at the given key from the [Values] collection if it
/// exists.
#[must_use]
pub fn get(&self, key: &str) -> Option<&Value> {
self.values.get(key)
}
}
impl FromIterator<(String, Value)> for Values {
fn from_iter<T: IntoIterator<Item = (String, Value)>>(iter: T) -> Self {
Self {
values: HashMap::from_iter(iter),
}
}
}
/// The [Value] type is used as the source of content during template expansion,
/// as part of a [Values] collection. It maps to the three valid shapes of data
/// defined by the [RFC](https://datatracker.ietf.org/doc/html/rfc6570) (a single item,
/// a list of items, or a list of key/value pairs).
///
/// All values are of type [String] for simplicity of ownership, etc.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum Value {
/// The [`Value::AssociativeArray`] variant allows for input data to be
/// treated as a logical map (with implicit ordering), complying with the
/// requirements for Level 4 templates defined in
/// [RFC6570 2.3](https://datatracker.ietf.org/doc/html/rfc6570#section-2.3).
AssociativeArray(Vec<(String, String)>),
/// The [`Value::Item`] variant allows for simple input data, complying with
/// the requirements for sub-Level 4 templates defined in
/// [RFC6570 2.3](https://datatracker.ietf.org/doc/html/rfc6570#section-2.3).
Item(String),
/// The [`Value::List`] variant allows for input data to be
/// treated as a logical list (with implicit ordering), complying with the
/// requirements for Level 4 templates defined in
/// [RFC6570 2.3](https://datatracker.ietf.org/doc/html/rfc6570#section-2.3).
List(Vec<String>),
}
impl Value {
/// Constructs a new [Value] from any iterator which produces pairs (tuples)
/// where both items implement `Into<String>`. This may be a simple array or
/// vec, or a more complex type such as an `IndexMap`.
///
/// ```
/// # use uri_template_system_core::Value;
/// #
/// let expected = Value::AssociativeArray(Vec::from_iter([
/// (String::from("a"), String::from("1")),
/// (String::from("b"), String::from("2")),
/// ]));
///
/// let array = [("a", "1"), ("b", "2")];
/// assert_eq!(expected, Value::associative_array(array));
///
/// let vec = Vec::from_iter(array);
/// assert_eq!(expected, Value::associative_array(vec));
/// ```
pub fn associative_array<T, U, V>(value: T) -> Self
where
T: IntoIterator<Item = (U, V)>,
U: Into<String>,
V: Into<String>,
{
Self::AssociativeArray(
value
.into_iter()
.map(|(u, v)| (u.into(), v.into()))
.collect(),
)
}
/// Constructs a new [Value] from any type which implements `Into<String>`.
///
/// ```
/// # use uri_template_system_core::Value;
/// #
/// let expected = Value::Item(String::from("a"));
///
/// let str = "a";
/// assert_eq!(expected, Value::item(str));
///
/// let string = String::from(str);
/// assert_eq!(expected, Value::item(string));
/// ```
pub fn item<T>(value: T) -> Self
where
T: Into<String>,
{
Self::Item(value.into())
}
/// Constructs a new [Value] from any iterator which produces items which
/// implement `Into<String>`, such as arrays, vecs, etc.
///
/// ```
/// # use uri_template_system_core::Value;
/// #
/// let expected = Value::List(Vec::from_iter([String::from("a"), String::from("b")]));
///
/// let array = ["a", "b"];
/// assert_eq!(expected, Value::list(array));
///
/// let vec = Vec::from_iter(array);
/// assert_eq!(expected, Value::list(vec));
/// ```
pub fn list<T, U>(value: T) -> Self
where
T: IntoIterator<Item = U>,
U: Into<String>,
{
Self::List(value.into_iter().map(Into::into).collect())
}
}
impl Value {
#[must_use]
pub(crate) fn defined(&self) -> bool {
match self {
Self::AssociativeArray(value) if value.is_empty() => false,
Self::List(value) if value.is_empty() => false,
_ => true,
}
}
}
// -----------------------------------------------------------------------------
// Tests
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn associative_array_value_construction() {
let expected = Value::AssociativeArray(Vec::from_iter([
(String::from("a"), String::from("1")),
(String::from("b"), String::from("2")),
]));
let array = [("a", "1"), ("b", "2")];
assert_eq!(expected, Value::associative_array(array));
let vec = Vec::from_iter(array);
assert_eq!(expected, Value::associative_array(vec));
}
#[test]
fn item_value_construction() {
let expected = Value::Item(String::from("a"));
let str = "a";
assert_eq!(expected, Value::item(str));
let string = String::from(str);
assert_eq!(expected, Value::item(string));
}
#[test]
fn list_value_construction() {
let expected = Value::List(Vec::from_iter([String::from("a"), String::from("b")]));
let array = ["a", "b"];
assert_eq!(expected, Value::list(array));
let vec = Vec::from_iter(array);
assert_eq!(expected, Value::list(vec));
}
}