1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
use core::fmt;
use crate::*;

/// Rich interface for consuming random number generators.
#[derive(Clone)]
pub struct Random<R: ?Sized>(pub R);

impl<R: Rng + ?Sized> Random<R> {
	/// Returns the next `u32` in the sequence.
	///
	/// # Examples
	///
	/// ```
	/// let value = urandom::new().next_u32();
	/// ```
	#[inline]
	pub fn next_u32(&mut self) -> u32 {
		self.0.next_u32()
	}

	/// Returns the next `u64` in the sequence.
	///
	/// # Examples
	///
	/// ```
	/// let value = urandom::new().next_u64();
	/// ```
	#[inline]
	pub fn next_u64(&mut self) -> u64 {
		self.0.next_u64()
	}

	/// Returns a uniform random `f32` in the half-open interval `[1.0, 2.0)`.
	///
	/// As only 23 bits are necessary to construct a random float in this range,
	/// implementations may override this method to provide a more efficient implementation.
	///
	/// If high quality uniform random floats are desired in open interval `(0.0, 1.0)` without bias see the [`Float01`](distributions::Float01) distribution.
	///
	/// # Examples
	///
	/// ```
	/// let value = urandom::new().next_f32();
	/// assert!(value >= 1.0 && value < 2.0);
	/// ```
	#[inline]
	pub fn next_f32(&mut self) -> f32 {
		self.0.next_f32()
	}

	/// Returns a uniform random `f64` in the half-open interval `[1.0, 2.0)`.
	///
	/// As only 52 bits are necessary to construct a random double in this range,
	/// implementations may override this method to provide a more efficient implementation.
	///
	/// If high quality uniform random floats are desired in open interval `(0.0, 1.0)` without bias see the [`Float01`](distributions::Float01) distribution.
	///
	/// # Examples
	///
	/// ```
	/// let value = urandom::new().next_f64();
	/// assert!(value >= 1.0 && value < 2.0);
	/// ```
	#[inline]
	pub fn next_f64(&mut self) -> f64 {
		self.0.next_f64()
	}

	/// Fills the destination buffer with random values from the Rng.
	///
	/// The underlying Rng may implement this as efficiently as possible and may not be the same as simply filling with `next_u32`.
	///
	/// # Examples
	///
	/// ```
	/// let mut rng = urandom::new();
	/// let mut buffer = [0u32; 32];
	/// rng.fill_u32(&mut buffer);
	/// assert_ne!(buffer, [0; 32]);
	/// ```
	#[inline]
	pub fn fill_u32(&mut self, buffer: &mut [u32]) {
		self.0.fill_u32(buffer)
	}

	/// Fills the destination buffer with uniform random values from the Rng.
	///
	/// The underlying Rng may implement this as efficiently as possible and may not be the same as simply filling with `next_u64`.
	///
	/// # Examples
	///
	/// ```
	/// let mut rng = urandom::new();
	/// let mut buffer = [0u64; 32];
	/// rng.fill_u64(&mut buffer);
	/// assert_ne!(buffer, [0; 32]);
	/// ```
	#[inline]
	pub fn fill_u64(&mut self, buffer: &mut [u64]) {
		self.0.fill_u64(buffer)
	}

	/// Fills the destination buffer with uniform random bytes from the Rng.
	///
	/// The underlying Rng may implement this as efficiently as possible.
	///
	/// # Examples
	///
	/// ```
	/// let mut rng = urandom::new();
	/// let mut buffer = [0u8; 32];
	/// rng.fill_bytes(&mut buffer);
	/// assert_ne!(buffer, [0u8; 32]);
	/// ```
	#[inline]
	pub fn fill_bytes(&mut self, buffer: &mut [u8]) {
		self.0.fill_bytes(buffer)
	}

	/// Advances the internal state significantly.
	///
	/// Useful to produce deterministic independent random number generators for parallel computation.
	#[inline]
	pub fn jump(&mut self) {
		self.0.jump();
	}

	/// Clones the current instance and advances the internal state significantly.
	///
	/// Useful to produce deterministic independent random number generators for parallel computation.
	///
	/// # Examples
	///
	/// ```
	/// let mut rng = urandom::new();
	/// for _ in 0..10 {
	/// 	parallel_computation(rng.split());
	/// }
	/// # fn parallel_computation(_: urandom::Random<impl urandom::Rng>) {}
	/// ```
	#[inline]
	pub fn split(&mut self) -> Self where Self: Clone {
		let cur = self.clone();
		self.0.jump();
		return cur;
	}

	/// Returns a sample from the [`Standard`](distributions::Standard) distribution.
	///
	/// # Examples
	///
	/// ```
	/// let int: i8 = urandom::new().next();
	/// ```
	#[inline]
	pub fn next<T>(&mut self) -> T where distributions::Standard: Distribution<T> {
		distributions::Standard.sample(self)
	}

	/// Fills the given slice with samples from the [`Standard`](distributions::Standard) distribution.
	///
	/// Because of its generic nature no optimizations are applied and all values are sampled individually from the distribution.
	///
	/// # Examples
	///
	/// ```
	/// let mut rng = urandom::new();
	/// let mut buffer = [false; 32];
	/// rng.fill(&mut buffer);
	/// ```
	#[inline]
	pub fn fill<T>(&mut self, buffer: &mut [T]) where distributions::Standard: Distribution<T> {
		let distr = distributions::Standard;
		for elem in buffer {
			*elem = distr.sample(self);
		}
	}

	/// Returns a sample from the [`Uniform`](distributions::Uniform) distribution within the given interval.
	///
	/// # Examples
	///
	/// ```
	/// let eyes = urandom::new().range(1..=6);
	/// assert!(eyes >= 1 && eyes <= 6);
	/// ```
	///
	/// If more than one sample from a specific interval is desired, it is more efficient to reuse the uniform sampler.
	///
	/// ```
	/// let mut rng = urandom::new();
	/// let distr = urandom::distributions::Uniform::from(0..100);
	///
	/// loop {
	/// 	let value = rng.sample(&distr);
	/// 	assert!(value >= 0 && value < 100);
	/// 	if value == 0 {
	/// 		break;
	/// 	}
	/// }
	/// ```
	#[inline]
	pub fn range<T, I>(&mut self, interval: I) -> T where T: distributions::SampleUniform, distributions::Uniform<T>: From<I> {
		distributions::Uniform::<T>::from(interval).sample(self)
	}

	/// Returns a sample from the given distribution.
	///
	/// See the [`distributions`](distributions) documentation for a list of available distributions.
	#[inline]
	pub fn sample<T, D>(&mut self, distr: &D) -> T where D: Distribution<T> {
		distr.sample(self)
	}

	/// Returns an iterator of samples from the given distribution.
	///
	/// See the [`distributions`](distributions) documentation for a list of available distributions.
	#[inline]
	pub fn samples<T, D>(&mut self, distr: D) -> distributions::Samples<'_, R, D, T> where D: Distribution<T> {
		distributions::Samples::new(self, distr)
	}

	/// Returns `true` with the given probability.
	///
	/// This is known as the [`Bernoulli`](distributions::Bernoulli) distribution.
	///
	/// # Precision
	///
	/// For `p >= 1.0`, the resulting distribution will always generate `true`.  
	/// For `p <= 0.0`, the resulting distribution will always generate `false`.  
	#[inline]
	pub fn chance(&mut self, p: f64) -> bool {
		distributions::Bernoulli::new(p).sample(self)
	}

	/// Flips a coin.
	///
	/// Returns `true` when heads and `false` when tails with 50% probability for either result.
	///
	/// Simply an alias for `rng.next::<bool>()` but describes the intent of the caller.
	#[inline]
	pub fn coin_flip(&mut self) -> bool {
		self.next()
	}

	/// Returns a random sample from the collection.
	///
	/// Returns `None` if and only if the collection is empty.
	///
	/// This method uses `Iterator::size_hint` for optimisation.
	/// With an accurate hint and where `Iterator::nth` is a constant-time operation this method can offer `O(1)` performance.
	///
	/// For slices, prefer [`choose`](Random::choose) which guarantees `O(1)` performance.
	///
	/// # Examples
	///
	/// Sample a random fizz, buzz or fizzbuzz number up to 100:
	///
	/// ```
	/// fn is_fizzbuzz(n: &i32) -> bool {
	/// 	n % 3 == 0 || n % 5 == 0
	/// }
	///
	/// let mut rng = urandom::new();
	/// let fizzbuzz = rng.single((0..100).filter(is_fizzbuzz)).unwrap();
	/// assert!(fizzbuzz % 3 == 0 || fizzbuzz % 5 == 0);
	/// ```
	///
	/// Pick a random emoji:
	///
	/// ```
	/// let mood = urandom::new().single("😀😎😐😕😠😢".chars()).unwrap();
	/// println!("I am {}!", mood);
	/// ```
	pub fn single<I: IntoIterator>(&mut self, collection: I) -> Option<I::Item> {
		let mut iter = collection.into_iter();

		// Take a short cut for collections with known length
		let (len, upper) = iter.size_hint();
		if upper == Some(len) {
			let index = usize::min(len, self.index(len));
			return iter.nth(index);
		}

		// Reservoir sampling, can be improved
		let mut result = None;
		let mut denom = 1.0;
		iter.for_each(|item| {
			if self.chance(1.0 / denom) {
				result = Some(item);
			}
			else {
				drop(item);
			}
			denom += 1.0;
		});
		result
	}
	/// Collect random samples from the collection into the buffer until it is filled.
	///
	/// Although the elements are selected randomly, the order of elements in the buffer is neither stable nor fully random.
	/// If random ordering is desired, shuffle the result.
	///
	/// Returns the number of elements added to the buffer.
	/// This equals the length of the buffer unless the iterator contains insufficient elements,
	/// in which case this equals the number of elements available.
	///
	/// Complexity is `O(n)` where `n` is the size of the collection.
	pub fn multiple<I: IntoIterator>(&mut self, collection: I, buffer: &mut [I::Item]) -> usize {
		let amount = buffer.len();
		let mut len = 0;

		collection.into_iter().enumerate().for_each(|(i, elem)| {
			if len < amount {
				buffer[len] = elem;
				len += 1;
			}
			else {
				let k = self.index(i + 1 + amount);
				if let Some(slot) = buffer.get_mut(k) {
					*slot = elem;
				}
			}
		});

		len
	}

	/// Returns a random usize in the `[0, len)` interval, mostly.
	///
	/// If the `len` is zero an arbitrary value is returned directly from the Rng.
	/// When used with indexing the bounds check should fail. Do not assume this value is inbounds.
	///
	/// # Examples
	///
	/// ```
	/// let mut rng = urandom::new();
	/// for len in 1..12345 {
	/// 	let index = rng.index(len);
	/// 	assert!(index < len, "len:{} index:{} was not inbounds", len, index);
	/// }
	/// ```
	pub fn index(&mut self, len: usize) -> usize {
		distributions::UniformInt::constant(0, len).sample(self)
	}

	/// Returns a shared reference to one random element of the slice, or `None` if the slice is empty.
	#[inline]
	pub fn choose<'a, T>(&mut self, slice: &'a [T]) -> Option<&'a T> {
		let index = self.index(slice.len());
		slice.get(index)
	}
	/// Returns a unique reference to one random element of the slice, or `None` if the slice is empty.
	#[inline]
	pub fn choose_mut<'a, T>(&mut self, slice: &'a mut [T]) -> Option<&'a mut T> {
		let index = self.index(slice.len());
		slice.get_mut(index)
	}

	/// Returns an iterator over random chosen elements of the slice with repetition.
	///
	/// Produces `None` values if the slice is empty.
	#[inline]
	pub fn choose_iter<'a, T>(&'a mut self, slice: &'a [T]) -> impl 'a + Iterator<Item = &'a T> {
		core::iter::from_fn(move || self.choose(slice))
	}

	/// Standard [Fisher–Yates](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle) shuffle.
	///
	/// # Examples
	///
	/// ```
	/// let mut rng = urandom::new();
	/// let mut array = [1, 2, 3, 4, 5];
	/// println!("Unshuffled: {:?}", array);
	/// rng.shuffle(&mut array);
	/// println!("Shuffled:   {:?}", array);
	/// ```
	#[inline]
	pub fn shuffle<T>(&mut self, slice: &mut [T]) {
		let mut len = slice.len();
		while len > 1 {
			let k = self.index(len);
			slice.swap(k, len - 1);
			len -= 1;
		}
	}

	/// Shuffle only the first _n_ elements.
	///
	/// This is an efficient method to select _n_ elements at random from the slice without repetition, provided the slice may be mutated.
	#[inline]
	pub fn partial_shuffle<T>(&mut self, slice: &mut [T], mut n: usize) {
		if slice.len() > 1 {
			n = usize::min(n, slice.len() - 1);
			for i in 0..n {
				let k = self.range(i..slice.len());
				slice.swap(i, k);
			}
		}
	}
}

impl<R: Rng + ?Sized> fmt::Debug for Random<R> {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		f.write_str("Random(impl Rng)")
	}
}

#[cfg(feature = "std")]
impl<R: Rng> std::io::Read for Random<R> {
	fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
		self.fill_bytes(buf);
		Ok(buf.len())
	}
	fn read_to_end(&mut self, _buf: &mut Vec<u8>) -> std::io::Result<usize> {
		panic!("cannot read_to_end from Rng")
	}
	fn read_to_string(&mut self, _buf: &mut String) -> std::io::Result<usize> {
		panic!("cannot read_to_string from Rng")
	}
	fn read_exact(&mut self, buf: &mut [u8]) -> std::io::Result<()> {
		self.fill_bytes(buf);
		Ok(())
	}
}

//----------------------------------------------------------------

#[test]
fn test_choose() {
	let mut rng = crate::new();

	let mut array = [0, 1, 2, 3, 4];
	let mut result = [0i32; 5];

	for _ in 0..10000 {
		result[*rng.choose(&array).unwrap()] += 1;
		result[*rng.choose_mut(&mut array).unwrap()] += 1;
	}

	let mean = (result[0] + result[1] + result[2] + result[3] + result[4]) / 5;
	let success = result.iter().all(|&x| (x - mean).abs() < 500);
	assert!(success, "mean: {}, result: {:?}", mean, result);
}