untyped_box/
std_conversions.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
use core::{alloc::Layout, mem::MaybeUninit, ptr::NonNull};

use alloc::{boxed::Box, vec::Vec};

use crate::{alloc_shim::Allocator, Allocation};

/// Error when converting an [Allocation] to a [Box].
#[derive(Debug, Clone)]
#[non_exhaustive]
pub enum BoxConversionError {
    /// Indicates that the layout of the requested type does not match the layout of the allocation.
    LayoutMismatch {
        /// expected layout for the requested type
        expected: Layout,
        /// layout of the allocation
        allocated: Layout,
    },
}

impl BoxConversionError {
    fn layout_mismatch(expected: Layout, allocated: Layout) -> Self {
        Self::LayoutMismatch {
            expected,
            allocated,
        }
    }
}

/// Error when converting an [Allocation] to a [Vec].
#[derive(Debug, Clone)]
#[non_exhaustive]
pub enum VecConversionError {
    /// Indicates an alignment mismatch of the requested element type and the allocation.
    AlignMismatch {
        /// expected alignment for the requested type
        expected: usize,
        /// actual alignment of the allocation
        allocated: usize,
    },
    /// Indicates that there is some slack capacity when trying to fit a whole multiple of
    /// elements into the allocated memory to determine the vec's capacity.
    SlackCapacity {
        /// size of the requested element
        element_size: usize,
        /// allocated capacity in bytes
        allocated: usize,
    },
    /// Tried to convert to a Vec of ZSTs. This is currently not supported due to ambiguity
    /// of the requested capacity. Even if the allocation is zero-sized, we can fit an
    /// arbitrary amount of elements as capacity.
    ///
    /// If you need this conversion to succeed, open an issue.
    ZeroSizedElements,
}

impl VecConversionError {
    fn align_mismatch(expected: usize, allocated: usize) -> Self {
        Self::AlignMismatch {
            expected,
            allocated,
        }
    }
    fn slack_capacity(element_size: usize, allocated: usize) -> Self {
        Self::SlackCapacity {
            element_size,
            allocated,
        }
    }
    fn zero_sized_elements() -> Self {
        Self::ZeroSizedElements
    }
}

// we can NOT write
// impl<T, A: Allocator> TryFrom<crate::Allocation<A>> for Box<MaybeUninit<T>, A> {}
// since   ^^^^^^^^^^^^ this is uncovered generic argument               here -^
// Hence, we only support the conversion into the global allocator via trait.
// THIS IS STUPID!
impl<T> TryFrom<crate::Allocation> for Box<MaybeUninit<T>> {
    type Error = BoxConversionError;
    fn try_from(alloc: crate::Allocation) -> Result<Self, Self::Error> {
        alloc.try_into_box::<T>()
    }
}

fn check_box_layout<A: Allocator, T>(allocation: &Allocation<A>) -> Result<(), BoxConversionError> {
    let expected = Layout::new::<T>();
    let actual = allocation.layout();
    if expected != actual {
        return Err(BoxConversionError::layout_mismatch(expected, actual));
    }
    Ok(())
}
// TODO: conversion for unsized box/pointer metadata
// TODO: conversion to ThinBox?

fn check_vec_layout<A: Allocator, T>(
    allocation: &Allocation<A>,
) -> Result<usize, VecConversionError> {
    let expected = Layout::new::<T>();
    let actual = allocation.layout();
    let element_align = expected.align();
    let alloc_align = actual.align();
    if element_align != alloc_align {
        return Err(VecConversionError::align_mismatch(
            element_align,
            alloc_align,
        ));
    }
    let element_size = expected.size();
    let byte_capacity = actual.size();
    if (element_size == 0 && byte_capacity != 0) || byte_capacity % element_size != 0 {
        return Err(VecConversionError::slack_capacity(
            element_size,
            byte_capacity,
        ));
    }
    if element_size == 0 {
        // Can not determine a capacity.
        // We can not make up ZSTs on the spot, so a capacity of 0 makes sense.
        // TODO: let the user provide a capacity hint?
        return Err(VecConversionError::zero_sized_elements());
    }

    let element_capacity = byte_capacity / element_size;
    debug_assert!(byte_capacity == element_size * element_capacity);
    Ok(element_capacity)
}

impl<T> TryFrom<crate::Allocation> for Vec<T> {
    type Error = VecConversionError;

    fn try_from(value: crate::Allocation) -> Result<Self, Self::Error> {
        value.try_into_vec()
    }
}

#[cfg(feature = "allocator-api")]
mod alloc_allocator_api {
    macro_rules! box_to_parts {
        ($value:ident) => {
            Box::into_raw_with_allocator($value)
        };
    }
    macro_rules! vec_to_parts {
        ($vec:ident) => {
            Vec::into_raw_parts_with_alloc($vec)
        };
    }
    macro_rules! box_from_parts {
        ($ptr:expr, $alloc:expr) => {{
            Box::from_raw_in($ptr, $alloc)
        }};
    }
    macro_rules! vec_from_parts {
        ($ptr:expr, $cap:expr, $alloc:expr) => {{
            Vec::from_raw_parts_in($ptr, 0, $cap, $alloc)
        }};
    }
    macro_rules! allocation_impl {
        ( $( $imp:tt )* ) => {
            type ABox<T, A> = alloc::boxed::Box<T, A>;
            type AVec<T, A> = alloc::vec::Vec<T, A>;
            impl<A: Allocator> crate::Allocation<A> {
                $( $imp )*
            }
        };
    }
    macro_rules! from_box_impl {
        ( $( #[doc = $doc:literal] )*
          struct DocAnchor;
          $( $imp:tt )*
        ) => {
            $( #[doc = $doc ] )*
            impl<T: ?Sized, A: Allocator> From<Box<T, A>> for crate::Allocation<A> {
                $( $imp )*
            }
        };
    }
    macro_rules! from_vec_impl {
        ( $( #[doc = $doc:literal] )*
          struct DocAnchor;
          $( $imp:tt )*
        ) => {
            $( #[doc = $doc ] )*
            impl<T, A: Allocator> From<Vec<T, A>> for crate::Allocation<A> {
                $( $imp )*
            }
        };
    }
    pub(super) use allocation_impl;
    pub(super) use box_from_parts;
    pub(super) use box_to_parts;
    pub(super) use from_box_impl;
    pub(super) use from_vec_impl;
    pub(super) use vec_from_parts;
    pub(super) use vec_to_parts;
}

#[cfg(not(feature = "allocator-api"))]
mod alloc_no_allocator_api {
    macro_rules! box_to_parts {
        ($value:ident) => {
            (Box::into_raw($value), $crate::alloc_shim::Global)
        };
    }

    macro_rules! vec_to_parts {
        ($vec:ident) => {{
            let mut $vec = core::mem::ManuallyDrop::new($vec);
            // TODO: wait for feature(vec_into_raw_parts)
            (
                $vec.as_mut_ptr(),
                $vec.len(),
                $vec.capacity(),
                $crate::alloc_shim::Global,
            )
        }};
    }

    macro_rules! box_from_parts {
        ($ptr:expr, $alloc:expr) => {{
            let _: $crate::alloc_shim::Global = $alloc;
            alloc::boxed::Box::from_raw($ptr)
        }};
    }
    macro_rules! vec_from_parts {
        ($ptr:expr, $cap:expr, $alloc:expr) => {{
            let _: $crate::alloc_shim::Global = $alloc;
            alloc::vec::Vec::from_raw_parts($ptr, 0, $cap)
        }};
    }

    macro_rules! allocation_impl {
        ( $( $imp:tt )* ) => {
            pub trait UseA<A> { type This: ?Sized; }
            impl<A, T: ?Sized> UseA<A> for T { type This = Self; }
            type ABox<T, A> = <alloc::boxed::Box<T> as UseA<A>>::This;
            type AVec<T, A> = <alloc::vec::Vec<T> as UseA<A>>::This;

            type A = $crate::alloc_shim::Global;
            impl<> crate::Allocation<> {
                $( $imp )*
            }
        };
    }
    macro_rules! from_box_impl {
        ( $( #[doc = $doc:literal] )*
          struct DocAnchor;
          $( $imp:tt )*
        ) => {
            $( #[doc = $doc ] )*
            impl<T: ?Sized> From<Box<T>> for crate::Allocation {
                $( $imp )*
            }
        };
    }
    macro_rules! from_vec_impl {
        ( $( #[doc = $doc:literal] )*
          struct DocAnchor;
          $( $imp:tt )*
        ) => {
            $( #[doc = $doc ] )*
            impl<T> From<Vec<T>> for crate::Allocation {
                $( $imp )*
            }
        };
    }
    pub(super) use allocation_impl;
    pub(super) use box_from_parts;
    pub(super) use box_to_parts;
    pub(super) use from_box_impl;
    pub(super) use from_vec_impl;
    pub(super) use vec_from_parts;
    pub(super) use vec_to_parts;
}

#[cfg(feature = "allocator-api")]
use alloc_allocator_api as api_impl;
#[cfg(not(feature = "allocator-api"))]
use alloc_no_allocator_api as api_impl;

api_impl::allocation_impl! {
    /// Convert the allocation into a box.
    ///
    /// This fails if the allocated layout does not match the requested type. The value might not be initialized,
    /// use [`Box::assume_init`] in case you have initialized the memory of this allocation correctly.
    ///
    /// See also the opposite conversion `Allocation as From<Box<_>>`.
    // TODO: add intro-doc link to `<Allocation as From<Box<_>>>`
    pub fn try_into_box<T>(self) -> Result<ABox<MaybeUninit<T>, A>, BoxConversionError> {
        let () = check_box_layout::<_, T>(&self)?;
        // Commit to the conversion
        let (ptr, _, alloc) = self.into_parts_with_alloc();
        let ptr = ptr.as_ptr().cast();
        // SAFETY:
        Ok(unsafe { api_impl::box_from_parts!(ptr, alloc) })
    }

    /// Convert the allocation into a [`Vec`].
    ///
    /// This fails if the allocated size is not a multiple of the requested element size, or if the element type is zero-sized.
    /// For the latter case, the capacity of the `Vec` would be ambiguous.
    ///
    /// The length of the returned vec is always set to `0` and has to be resized manually with [`Vec::set_len`].
    ///
    /// See also the opposite conversion `Allocation as From<Vec<_>>`.
    // TODO: add intro-doc link to `<Allocation as From<Vec<_>>>`
    pub fn try_into_vec<T>(self) -> Result<AVec<T, A>, VecConversionError> {
        let capacity = check_vec_layout::<_, T>(&self)?;
        let (ptr, _, alloc) = self.into_parts_with_alloc();
        let ptr = ptr.as_ptr().cast();
        Ok(unsafe { api_impl::vec_from_parts!(ptr, capacity, alloc) })
    }
}

// This has to appear side-by-side with allocation_impl because it relies on `A` and `ABox` to be defined

api_impl::from_box_impl! {
    /// The value in the box will not be dropped, as if passed to [`forget`](core::mem::forget).
    /// Use the inverse (fallible) conversion to recover the value.
    ///
    /// ```
    /// # use std::mem::MaybeUninit;
    /// # use untyped_box::Allocation;
    /// let boxed = Box::new(42);
    /// let alloc: Allocation = boxed.into();
    /// let boxed = alloc.try_into_box::<u32>().unwrap();
    /// let boxed = unsafe { boxed.assume_init() };
    /// assert_eq!(*boxed, 42);
    /// ```
    struct DocAnchor;

    fn from(value: ABox<T, A>) -> Self {
        let layout = Layout::for_value(&*value);
        let (ptr, alloc) = api_impl::box_to_parts!(value);
        let ptr = unsafe { NonNull::new_unchecked(ptr) };
        unsafe { Self::from_parts_in(ptr.cast(), layout, alloc) }
    }
}

// This has to appear side-by-side with allocation_impl because it relies on `A` and `ABox` to be defined

api_impl::from_vec_impl! {
    /// The values in the `Vec` will not be dropped, as if by a call to [`vec.set_len(0)`](Vec::set_len).
    ///
    /// ```
    /// # use std::mem::MaybeUninit;
    /// # use untyped_box::Allocation;
    /// let values = vec![42];
    /// let alloc: Allocation = values.into();
    /// let mut values = alloc.try_into_vec::<u32>().unwrap();
    /// unsafe { values.set_len(1) };
    /// assert_eq!(values, [42]);
    /// ```
    struct DocAnchor;

    fn from(value: AVec<T, A>) -> Self {
        let mut value = value;
        unsafe { value.set_len(0) };
        let layout = Layout::for_value(value.spare_capacity_mut());
        let (ptr, _, _, alloc) = api_impl::vec_to_parts!(value);
        let ptr = unsafe { NonNull::new_unchecked(ptr) };
        unsafe { Self::from_parts_in(ptr.cast(), layout, alloc) }
    }
}