untyped_box/impl.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
use core::{alloc::Layout, any::type_name, mem::MaybeUninit, ptr::NonNull};
use crate::alloc_shim::{AllocError, Allocator, Global};
/// An allocation is management representation of some allocated memory.
///
/// For the most part, this behaves like a lower-level (untyped) cousin of a `Box`.
/// The memory backing this allocation is deallocated when the allocation is dropped.
/// In contrast, no validity or initialization state of the memory is implied by
/// existance of an [Allocation].
pub struct Allocation<A: Allocator = Global> {
// TODO: should be a Unique pointer!
ptr: NonNull<u8>,
layout: Layout,
alloc: A,
}
// TODO: There is a bit of a mismatch here. In essence, we are losing information.
// For example, requesting an allocation for some `Layout::new::<T>()` that results in the allocator
// giving us more memory than we asked for might make later checks when trying to convert to a `Box`
// fail on size mismatch.
// We might have to blow up the allocation struct to reconstruct [Memory fitting] information.
// [Memory fitting]: https://doc.rust-lang.org/nightly/alloc/alloc/trait.Allocator.html#memory-fitting
fn match_allocated_size(ptr: NonNull<[u8]>, layout: Layout) -> (NonNull<u8>, Layout) {
let actual_layout = unsafe { Layout::from_size_align_unchecked(ptr.len(), layout.align()) };
debug_assert!(actual_layout.size() >= layout.size());
(ptr.cast(), actual_layout)
}
fn allocate(alloc: &impl Allocator, layout: Layout) -> Result<(NonNull<u8>, Layout), AllocError> {
let ptr = alloc.allocate(layout)?;
Ok(match_allocated_size(ptr, layout))
}
fn allocate_zeroed(
alloc: &impl Allocator,
layout: Layout,
) -> Result<(NonNull<u8>, Layout), AllocError> {
let ptr = alloc.allocate_zeroed(layout)?;
Ok(match_allocated_size(ptr, layout))
}
unsafe fn grow(
alloc: &impl Allocator,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<(NonNull<u8>, Layout), AllocError> {
let ptr = alloc.grow(ptr, old_layout, new_layout)?;
Ok(match_allocated_size(ptr, new_layout))
}
unsafe fn grow_zeroed(
alloc: &impl Allocator,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<(NonNull<u8>, Layout), AllocError> {
let ptr = alloc.grow_zeroed(ptr, old_layout, new_layout)?;
Ok(match_allocated_size(ptr, new_layout))
}
unsafe fn shrink(
alloc: &impl Allocator,
ptr: NonNull<u8>,
old_layout: Layout,
new_layout: Layout,
) -> Result<(NonNull<u8>, Layout), AllocError> {
let ptr = alloc.shrink(ptr, old_layout, new_layout)?;
Ok(match_allocated_size(ptr, new_layout))
}
/// Methods for the global allocator
impl Allocation {
/// Allocate new memory for the given layout.
///
/// The pointer backing the allocation is valid for reads and writes of `layout.size()` bytes and this
/// memory region does not alias any other existing allocation.
///
/// The pointer is guaranteed to be aligned to `layout.align()` but several systems align memory more
/// lax when a small alignment is requested.
///
/// Memory is not initialized or zeroed, try [`Self::zeroed`] instead.
///
/// # Panics
///
/// This calls [`alloc::alloc::handle_alloc_error`] when no memory could be allocated, which can panic.
/// See [`Self::try_new_in`] for a version that returns an error instead.
// Forwards to alloc, handles layout.size() == 0 with a dangling ptr
pub fn new(layout: Layout) -> Self {
Self::new_in(layout, Global)
}
/// Allocate new zeroed-out memory for the given layout.
///
/// # Panics
///
/// This calls [`alloc::alloc::handle_alloc_error`] when no memory could be allocated, which can panic.
/// See [`Self::try_zeroed_in`] for a version that returns an error instead.
pub fn zeroed(layout: Layout) -> Self {
Self::zeroed_in(layout, Global)
}
/// Split the allocation into its raw parts.
///
/// Deallocating the allocation is the responsibility of the caller. The returned
/// pointer can be passed to [`alloc::alloc::dealloc`] if the returned layout indicates `size() > 0`.
/// If the allocated memory is 0 sized, the pointer does not need to be deallocated.
///
/// See also [`Self::into_parts_with_alloc`] for an allocator-aware version.
pub fn into_parts(self) -> (NonNull<u8>, Layout) {
let (ptr, layout, _) = Self::into_parts_with_alloc(self);
(ptr, layout)
}
/// Constructs an [`Allocation`] from a pointer and layout information.
///
/// # Safety
///
/// The pointer must point to [*currently-allocated*] memory from the global allocator, and `layout`
/// was used to allocate that memory.
///
/// [*currently-allocated*]: Allocator#currently-allocated-memory
pub unsafe fn from_parts(ptr: NonNull<u8>, layout: Layout) -> Self {
Self::from_parts_in(ptr, layout, Global)
}
}
/// Common methods
impl<A: Allocator> Allocation<A> {
/// Gets a pointer to the allocation.
///
/// The pointer is always aligned to the alignment of the layout indicated by [Self::layout] or the requested layout
/// indicated on allocation, whichever is more strict.
///
/// The pointer can be used to read and write memory in this allocation until it is [reallocated](Self::realloc),
/// dropped or the memory is reclaimed manually (e.g. after converting [`into_parts`](Self::into_parts)).
///
/// In particular, the pointer does not in itself materialize a reference to the underlying storage for the purpose of the aliasing model.
pub fn as_ptr<T>(&self) -> NonNull<T> {
self.ptr.cast()
}
/// View the underlying storage as a possibly uninitialized `T`.
///
/// # Panics
///
/// If the allocation is too small, or not aligned enough to contain a `T`.
pub fn as_uninit_ref<T>(&self) -> &MaybeUninit<T> {
assert!(
self.layout.size() >= size_of::<T>(),
"allocation too small to represent a {}",
type_name::<T>()
);
assert!(
self.layout.align() >= align_of::<T>(),
"allocation not aligned for a {}",
type_name::<T>()
);
unsafe { &*self.ptr.as_ptr().cast() }
}
/// View the underlying storage as a possibly uninitialized `T`.
///
/// # Panics
///
/// If the allocation is too small, or not aligned enough to contain a `T`.
pub fn as_uninit_mut<T>(&mut self) -> &mut MaybeUninit<T> {
assert!(
self.layout.size() >= size_of::<T>(),
"allocation too small to represent a {}",
type_name::<T>()
);
assert!(
self.layout.align() >= align_of::<T>(),
"allocation not aligned for a {}",
type_name::<T>()
);
unsafe { &mut *self.ptr.as_ptr().cast() }
}
/// View the allocation as a pointer to a slice of possibly uninitialized bytes.
///
/// The caller is responsible for checking lifetimes when convert to a reference.
///
/// The pointer can be used to read and write memory in this allocation until it is [reallocated](Self::realloc),
/// dropped or the memory is reclaimed manually (e.g. after converting [`into_parts`](Self::into_parts)).
///
/// Like [`as_ptr`](Self::as_ptr), this does not materialize a reference to the underlying storage for the purpose of the aliasing model.
/// Hence, these two methods can be intermixed.
pub fn as_slice(&self) -> NonNull<[MaybeUninit<u8>]> {
let ptr = core::ptr::slice_from_raw_parts_mut(
self.ptr.as_ptr().cast::<MaybeUninit<u8>>(),
self.layout.size(),
);
unsafe { NonNull::new_unchecked(ptr) }
}
/// Reallocates memory to a new layout.
///
/// If the newly requested layout is larger than the currently allocated layout, existing (possibly uninitialized) bytes are preserved.
/// Newly allocated bytes are uninitialized.
///
/// Any pointers to the managed memory are invalidated on return.
///
/// # Panics
///
/// This calls [`alloc::alloc::handle_alloc_error`] when no memory could be allocated, which can panic. In this case, pointers are still valid.
/// See [`Self::try_realloc`] for a version that returns an error instead.
// Calls either grow or shrink, compares against stored layout
pub fn realloc(&mut self, new_layout: Layout) {
let () = self
.try_realloc(new_layout)
.unwrap_or_else(|AllocError| alloc::alloc::handle_alloc_error(new_layout));
}
/// Reallocates memory to a new layout.
///
/// If the newly requested layout is larger than the currently allocated layout, existing (possibly uninitialized) bytes are preserved.
/// Newly allocated bytes are zeroed.
///
/// Any pointers to the managed memory are invalidated on return.
///
/// # Panics
///
/// This calls [`alloc::alloc::handle_alloc_error`] when no memory could be allocated, which can panic. In this case, pointers are still valid.
/// See [`Self::try_realloc_zeroed`] for a version that returns an error instead.
pub fn realloc_zeroed(&mut self, new_layout: Layout) {
let () = self
.try_realloc_zeroed(new_layout)
.unwrap_or_else(|AllocError| alloc::alloc::handle_alloc_error(new_layout));
}
/// Get the layout of the underlying allocation.
///
/// This layout is guaranteed to be at least as large as previously requested from [`new`](Self::new) or [`realloc`](Self::realloc) and
/// at least as strictly aligned, but might indicate more available memory.
pub fn layout(&self) -> Layout {
self.layout
}
}
/// Methods using the allocator-api or shim
impl<A: Allocator> Allocation<A> {
/// Allocate new memory for the given layout in a given allocator.
///
/// The pointer backing the allocation is valid for reads and writes of `layout.size()` bytes and this
/// memory region does not alias any other existing allocation.
///
/// The pointer is guaranteed to be aligned to `layout.align()` but several systems align memory more
/// lax when a small alignment is requested.
///
/// Memory is not initialized or zeroed, try [`Self::zeroed_in`] instead.
///
/// # Panics
///
/// This calls [`alloc::alloc::handle_alloc_error`] when no memory could be allocated, which can panic.
/// See [`Self::try_new_in`] for a version that returns an error instead.
pub fn new_in(layout: Layout, alloc: A) -> Self {
Self::try_new_in(layout, alloc)
.unwrap_or_else(|AllocError| alloc::alloc::handle_alloc_error(layout))
}
/// Allocate new memory for the given layout in a given allocator.
///
/// Returns an error when no memory could be allocated.
pub fn try_new_in(layout: Layout, alloc: A) -> Result<Self, AllocError> {
let (ptr, layout) = allocate(&alloc, layout)?;
Ok(Self { ptr, layout, alloc })
}
/// Allocate new zeroed-out memory for the given layout in a given allocator.
///
/// # Panics
///
/// This calls [`alloc::alloc::handle_alloc_error`] when no memory could be allocated, which can panic.
/// See [`Self::try_zeroed_in`] for a version that returns an error instead.
pub fn zeroed_in(layout: Layout, alloc: A) -> Self {
Self::try_zeroed_in(layout, alloc)
.unwrap_or_else(|AllocError| alloc::alloc::handle_alloc_error(layout))
}
/// Allocate new zeroed-out memory for the given layout in a given allocator.
///
/// Returns an error when no memory could be allocated.
pub fn try_zeroed_in(layout: Layout, alloc: A) -> Result<Self, AllocError> {
let (ptr, layout) = allocate_zeroed(&alloc, layout)?;
Ok(Self { ptr, layout, alloc })
}
/// Split the allocation into its raw parts including the allocator.
///
/// Deallocating the allocation is the responsibility of the caller. The returned
/// pointer can be passed to `alloc.deallocate()`.
pub fn into_parts_with_alloc(self) -> (NonNull<u8>, Layout, A) {
let me = core::mem::ManuallyDrop::new(self);
let alloc = unsafe { core::ptr::read(&me.alloc) };
(me.ptr, me.layout, alloc)
}
/// Constructs an [`Allocation`] from a pointer and layout information in the given allocator.
///
/// # Safety
///
/// The pointer must point to [*currently-allocated*] memory from the given allocator, and `layout`
/// [*fits*] that memory.
///
/// [*currently-allocated*]: Allocator#currently-allocated-memory
/// [*fits*]: Allocator#memory-fitting
pub unsafe fn from_parts_in(ptr: NonNull<u8>, layout: Layout, alloc: A) -> Self {
Self { ptr, layout, alloc }
}
/// Reallocates memory to a new layout.
///
/// Returns an error when the memory could not be reallocated. In this case, any previously derived
/// pointers remain valid and no memory is deallocated.
///
/// # See also
///
/// [`Self::realloc`] for more disuccion about the memory contents after reallocation.
pub fn try_realloc(&mut self, new_layout: Layout) -> Result<(), AllocError> {
if new_layout == self.layout {
return Ok(());
}
// Prefer grow to shrink when all we do is change alignment
if new_layout.size() >= self.layout.size() {
(self.ptr, self.layout) =
unsafe { grow(&self.alloc, self.ptr, self.layout, new_layout)? };
Ok(())
} else {
(self.ptr, self.layout) =
unsafe { shrink(&self.alloc, self.ptr, self.layout, new_layout)? };
Ok(())
}
}
/// Reallocates memory to a new layout.
///
/// Returns an error when the memory could not be reallocated. In this case, any previously derived
/// pointers remain valid and no memory is deallocated.
///
/// # See also
///
/// [`Self::realloc_zeroed`] for more disuccion about the memory contents after reallocation.
pub fn try_realloc_zeroed(&mut self, new_layout: Layout) -> Result<(), AllocError> {
if new_layout == self.layout {
return Ok(());
}
// Prefer grow to shrink when all we do is change alignment
if new_layout.size() >= self.layout.size() {
(self.ptr, self.layout) =
unsafe { grow_zeroed(&self.alloc, self.ptr, self.layout, new_layout)? };
Ok(())
} else {
(self.ptr, self.layout) =
unsafe { shrink(&self.alloc, self.ptr, self.layout, new_layout)? };
Ok(())
}
}
}
impl<A: Allocator> Drop for Allocation<A> {
fn drop(&mut self) {
unsafe {
self.alloc.deallocate(self.ptr, self.layout);
}
}
}
unsafe impl<A: Allocator + Sync> Sync for Allocation<A> {}
unsafe impl<A: Allocator + Send> Send for Allocation<A> {}