1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
//! The implementation of `UnsizedVec<T>` for `T: ?Sized + ?Aligned`.

use ::alloc::{alloc, collections::TryReserveErrorKind};
use core::{
    alloc::{Allocator, Layout},
    cmp,
    iter::FusedIterator,
    marker::{PhantomData, Unsize},
    mem::{self, ManuallyDrop},
    ptr::{self, addr_of, NonNull},
};

use emplacable::{Emplacable, EmplacableFn, Emplacer};

use crate::{
    helper::{
        decompose, valid_align::ValidAlign, valid_size::ValidSizeUnaligned, MetadataRemainder,
        SplitMetadata,
    },
    marker::Aligned,
    unwrap_try_reserve_result,
};

use super::{TryReserveError, UnsizedVecImpl, UnsizedVecProvider};

struct ElementInfo<T: ?Sized> {
    /// The pointer metadata of the element.
    metadata: <T as SplitMetadata>::Remainder,
    /// The offset that the element following this one would be stored at,
    /// but disregarding padding due to over-alignment.
    /// We use this encoding to store the sizes of `Vec` elements
    /// because it allows for *O(1)* random access while only storing
    /// a single `usize`.
    ///
    /// To get the actual offset of the next element, use
    /// `unchecked_pad_to(end_offset, align)`.
    end_offset: ValidSizeUnaligned,
}

impl<T: ?Sized> Clone for ElementInfo<T> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<T: ?Sized> Copy for ElementInfo<T> {}

pub(in super::super) struct UnalignedVecInner<T: ?Sized> {
    ptr: NonNull<()>,
    /// # Safety
    ///
    /// For simplicity, must be a multiple of `self.align`.
    byte_capacity: ValidSizeUnaligned,
    elems_info: ManuallyDrop<::alloc::vec::Vec<ElementInfo<T>>>,
    align: ValidAlign,
    _marker: PhantomData<T>,
}

impl<T: ?Sized> UnalignedVecInner<T> {
    /// The number of bytes this vec is curretly using,
    /// discounting padding following the last element.
    #[inline]
    fn unaligned_byte_len(&self) -> ValidSizeUnaligned {
        self.elems_info
            .last()
            .map_or(ValidSizeUnaligned::ZERO, |last| last.end_offset)
    }

    /// The number of bytes this vec is curretly using,
    /// including padding following the last element.
    #[inline]
    fn aligned_byte_len(&self) -> ValidSizeUnaligned {
        // SAFETY: it's an invariant of the capacity field that this be legal
        unsafe { self.unaligned_byte_len().unchecked_pad_to(self.align) }
    }

    /// Returns the offset of the start of this element in the vec.
    ///
    /// # Safety
    ///
    /// Does not bounds checks
    #[inline]
    unsafe fn start_offset_of_unchecked(&self, index: usize) -> ValidSizeUnaligned {
        index
            .checked_sub(1)
            .map_or(ValidSizeUnaligned::ZERO, |index_m_1|
                // SAFETY: precondition of function
                unsafe {
                self.elems_info
                    .get_unchecked(index_m_1)
                    .end_offset
                    .unchecked_pad_to(self.align)
            })
    }

    /// Returns the maximum alignment among all the elements in the vec.
    /// Used by `shrink`.
    #[inline]
    fn max_align_of_elems(&self) -> ValidAlign {
        self.iter()
            .map(ValidAlign::of_val)
            .max()
            .unwrap_or(ValidAlign::ONE)
    }

    /// Used in `try_reserve_exact_bytes_align_unchecked`.
    ///
    /// # Safety
    ///
    /// `old_align <= new_align` must hold.
    unsafe fn len_after_realign_up(
        &mut self,
        old_align: ValidAlign,
        new_align: ValidAlign,
    ) -> Option<ValidSizeUnaligned> {
        debug_assert!(old_align <= new_align);
        let mut new_pad_to_new: ValidSizeUnaligned = ValidSizeUnaligned::ZERO;
        self.elems_info.iter().try_fold(
            ValidSizeUnaligned::ZERO,
            |shift,
             ElementInfo {
                 end_offset: old_end_offset,
                 ..
             }| {
                let new_end_offset = old_end_offset.checked_add(shift)?;

                new_pad_to_new = new_end_offset.checked_pad_to(new_align)?;

                // SAFETY: `old_align <= new_align`, so if above call returned `Some`, this must be legal.
                let new_pad_to_old = unsafe { new_end_offset.unchecked_pad_to(old_align) };

                // SAFETY: `old_align <= new_align`, so can't underflow
                let padding_difference = unsafe { new_pad_to_new.unchecked_sub(new_pad_to_old) };

                shift.checked_add(padding_difference)
            },
        )?;

        Some(new_pad_to_new)
    }

    /// Realigns all elements in the vec to the given `new_align`,
    /// if the current align is less.
    ///
    /// # Safety
    ///
    /// `new_align > self.align` must hold.
    /// `self.len() > 1` must hold.
    ///
    /// Realigning must not lead to overflow.
    ///
    /// `new_align` must be equal to the actual alignment of the allocation,
    /// Also, this function does not allocate memory,
    /// nor does it check that enough memory has been allocated.
    ///
    /// Finally, this function doesn't update `self.align`, do that yourself.
    unsafe fn realign_up(&mut self, new_align: ValidAlign) {
        let old_align = self.align;

        debug_assert!(self.len() > 1 && new_align > old_align);

        // We compute the new offset of each element, along with the difference from the old offset.
        // Then, we copy everything over.
        // Doing this without allocating requires some complicated code.
        //
        // First we calculate how much we need to shift the very last element,
        // then we perform the copies while reversing our calculations.
        //
        // The first element is already in the right place, its offset is 0.

        // Starting here, our offsets are invalid, so unwinding is UB !!!
        // To make this explicit, we use unckecked ops for arithmetic.
        // This loop is basically `len_after_realign_up`, excpet with 0 checks and modifying metadata.
        let final_offset_shift: ValidSizeUnaligned = self.elems_info.iter_mut().fold(
            ValidSizeUnaligned::ZERO,
            |shift, ElementInfo { end_offset, .. }| {
                // SAFETY: precondition of function
                unsafe {
                    let new_end_offset = end_offset.unchecked_add(shift);
                    *end_offset = new_end_offset;

                    let new_pad_to_new = new_end_offset.unchecked_pad_to(new_align);
                    let new_pad_to_old = new_end_offset.unchecked_pad_to(old_align);
                    let padding_difference = new_pad_to_new.unchecked_sub(new_pad_to_old);

                    shift.unchecked_add(padding_difference)
                }
            },
        );

        // Now we go in reverse, and copy.
        self.elems_info.array_windows::<2>().rev().fold(
            final_offset_shift,
            |shift_end,

             &[ElementInfo {
                 end_offset: prev_end_offset,
                 ..
             }, ElementInfo {
                 end_offset: new_end_offset,
                 ..
             }]| {
                // SAFETY:: See comments inside block
                unsafe {
                    // SAFETY: Reversing computation in the last loop.
                    let new_pad_to_new = new_end_offset.unchecked_pad_to(new_align);
                    let new_pad_to_old = new_end_offset.unchecked_pad_to(old_align);
                    let padding_difference = new_pad_to_new.unchecked_sub(new_pad_to_old);
                    let shift_start = shift_end.unchecked_sub(padding_difference);

                    let new_start_offset = prev_end_offset.unchecked_pad_to(new_align);
                    let old_start_offset = new_start_offset.unchecked_sub(shift_start);

                    // SAFETY: End offset >= start offset
                    let size_of_val = new_end_offset.unchecked_sub(new_start_offset);

                    // SAFETY: moving element to new correct position, as computed above
                    ptr::copy(
                        self.ptr.as_ptr().cast::<u8>().add(old_start_offset.get()),
                        self.ptr.as_ptr().cast::<u8>().add(new_start_offset.get()),
                        size_of_val.get(),
                    );
                    shift_start
                }
            },
        );
    }

    /// Realigns all elements in the vec to the given `new_align`,
    /// if the current align is greater.
    ///
    /// Opposite of `realign_up`.
    ///
    /// # Safety
    ///
    /// `new_align < self.align` must hold.
    ///  `new_align >= self.max_align_of_elems()` must hold.
    /// `self.len() > 1` must hold.
    ///
    /// This function does not shrink the allocation,
    /// you will need to do that yourself,
    /// *even if you don't change the allocated size*,
    /// to ensure that the allocation is later deallocated
    /// with the correct alignment.
    ///
    /// Finally, this function doesn't update `self.align`, do that yourself.
    unsafe fn realign_down(&mut self, new_align: ValidAlign) {
        let old_align = self.align;

        debug_assert!(self.len() > 1 && new_align < old_align);

        // We compute the new offset of each element, along with the difference from the old offset.
        // Then, we copy the eement over.
        //
        // This is a lot simpler than `realign_up`, we can do everyting in a single pass.

        let mut shift_back = ValidSizeUnaligned::ZERO;
        for &[ElementInfo {
            end_offset: prev_new_end_offset,
            ..
        }, ElementInfo {
            end_offset: old_end_offset,
            ..
        }] in self.elems_info.array_windows::<2>()
        {
            // SAFETY: shift must be smaller than size of allocation up to this point
            let new_end_offset = unsafe { old_end_offset.unchecked_sub(shift_back) };

            // SAFETY: can't overflow, or else unshifted allocation would have overflowed
            let new_start_offset = unsafe { prev_new_end_offset.unchecked_pad_to(new_align) };

            // SAFETY: shift must be smaller than size of allocation up to this point
            let old_start_offset = unsafe { new_start_offset.unchecked_sub(shift_back) };

            // SAFETY: End offset >= start offset
            let size_of_val = unsafe { new_end_offset.unchecked_sub(new_start_offset) };

            // SAFETY: moving element to new correct position, as computed above
            unsafe {
                ptr::copy(
                    self.ptr.as_ptr().cast::<u8>().add(old_start_offset.get()),
                    self.ptr.as_ptr().cast::<u8>().add(new_start_offset.get()),
                    size_of_val.get(),
                );
            }

            // SAFETY: pads can't overfolow as otherwise old offsets would be invalid.
            // Sub can't overflow as new_align < old_align.
            // Add can't overflow as we can't shift more than the entire size of the allocation.
            shift_back = unsafe {
                shift_back.unchecked_add(
                    new_end_offset
                        .unchecked_pad_to(old_align)
                        .unchecked_sub(new_end_offset.unchecked_pad_to(new_align)),
                )
            };
        }
    }
}

impl<T: ?Sized> Drop for UnalignedVecInner<T> {
    fn drop(&mut self) {
        let mut start_offset: ValidSizeUnaligned = ValidSizeUnaligned::ZERO;

        // SAFETY: we are in `drop`, nobody will access the `ManuallyDrop` after us
        let elems_info = unsafe { ManuallyDrop::take(&mut self.elems_info) };

        // Drop remaining elements
        for ElementInfo {
            metadata,
            end_offset,
        } in elems_info
        {
            // SAFETY: end of element can't be smaller than start
            let size_of_val = unsafe { end_offset.unchecked_sub(start_offset) };
            let metadata = metadata.as_metadata(size_of_val);
            let start_of_alloc = self.ptr.as_ptr().cast::<u8>();
            // SAFETY: offset is within allocation
            let thin_ptr_to_elem = unsafe { start_of_alloc.add(start_offset.get()) };
            let wide_ptr_to_elem: *mut T =
                ptr::from_raw_parts_mut(thin_ptr_to_elem.cast(), metadata);

            // SAFETY: align comes from the vec
            start_offset = unsafe { end_offset.unchecked_pad_to(self.align) };

            // SAFETY: nobody will access this after us
            unsafe { wide_ptr_to_elem.drop_in_place() }
        }

        // Drop allocation
        //
        // SAFETY: capacity and align come from the vec.
        unsafe {
            let alloc_layout = self
                .byte_capacity
                .as_layout_with_align_unchecked(self.align);
            alloc::Global.deallocate(self.ptr.cast(), alloc_layout);
        }
    }
}

impl<T: ?Sized> UnsizedVecProvider<T> for UnalignedVecInner<T> {
    type Align = ValidAlign;
    type Size = ValidSizeUnaligned;

    type Iter<'a> = UnalignedIter<'a, T> where T: 'a;
    type IterMut<'a> = UnalignedIterMut<'a, T> where T: 'a;

    const NEW_ALIGN_1: UnalignedVecInner<T> = UnalignedVecInner {
        ptr: <() as Aligned>::DANGLING_THIN,
        byte_capacity: ValidSizeUnaligned::ZERO,
        elems_info: ManuallyDrop::new(::alloc::vec::Vec::new()),
        align: <()>::ALIGN,
        _marker: PhantomData,
    };

    const NEW_ALIGN_PTR: UnalignedVecInner<T> = UnalignedVecInner {
        ptr: <usize as Aligned>::DANGLING_THIN,
        byte_capacity: ValidSizeUnaligned::ZERO,
        elems_info: ManuallyDrop::new(::alloc::vec::Vec::new()),
        align: <usize>::ALIGN,
        _marker: PhantomData,
    };

    #[inline]
    fn capacity(&self) -> usize {
        self.elems_info.capacity()
    }

    #[inline]
    fn byte_capacity(&self) -> usize {
        self.byte_capacity.get()
    }

    #[inline]
    fn align(&self) -> usize {
        self.align.into()
    }

    fn try_reserve_exact_capacity_bytes_align(
        &mut self,
        additional: usize,
        additional_bytes: usize,
        align: ValidAlign,
    ) -> Result<(), TryReserveError> {
        self.elems_info.try_reserve_exact(additional)?;

        let old_align = self.align;
        let new_align = cmp::max(old_align, align);

        let old_cap = self.byte_capacity;

        let (new_align, old_cap_realigned, size_of_existing_elems_realigned): (
            ValidAlign,
            ValidSizeUnaligned,
            ValidSizeUnaligned,
        ) = if old_align < new_align {
            (
                new_align,
                old_cap.checked_pad_to(new_align).ok_or(TryReserveError {
                    kind: TryReserveErrorKind::CapacityOverflow,
                })?,
                // SAFETY: just checked `old_align < new_align`
                unsafe { self.len_after_realign_up(old_align, new_align) }
                    // Return early if existing elems overflow `isize`
                    // when realigned.
                    .ok_or(TryReserveError {
                        kind: TryReserveErrorKind::CapacityOverflow,
                    })?,
            )
        } else {
            if additional_bytes == 0 {
                return Ok(());
            }

            (old_align, old_cap, self.aligned_byte_len())
        };

        // Now we add on the additional size requested.
        let new_size = size_of_existing_elems_realigned
            .checked_add_pad(additional_bytes, align)
            .ok_or(TryReserveError {
                kind: TryReserveErrorKind::CapacityOverflow,
            })?;

        let old_cap = self.byte_capacity;
        let new_cap = cmp::max(old_cap_realigned, new_size);

        if old_align < new_align || old_cap < new_cap {
            if new_cap > ValidSizeUnaligned::ZERO {
                // SAFETY: `new_cap` checked to be legal for following call in all branches above
                let new_layout = unsafe { new_cap.as_layout_with_align_unchecked(new_align) };
                let new_ptr: NonNull<[u8]> = (if old_cap == ValidSizeUnaligned::ZERO {
                    alloc::Global.allocate(new_layout)
                } else {
                    //  SAFETY: `old_cap` and `old_align` come from the vec
                    unsafe {
                        let old_layout = old_cap.as_layout_with_align_unchecked(old_align);
                        alloc::Global.grow(self.ptr.cast(), old_layout, new_layout)
                    }
                })
                .map_err(|_| TryReserveError {
                    kind: TryReserveErrorKind::AllocError {
                        layout: new_layout,
                        non_exhaustive: (),
                    },
                })?;

                self.byte_capacity = ValidSizeUnaligned::new_squished_to(new_ptr.len(), new_align);
                self.ptr = new_ptr.cast();

                if old_align < new_align {
                    if self.len() > 1 {
                        // SAFETY: Just performed necessary allocation, if guard.
                        // Overflow covered by earlier checks.
                        unsafe { self.realign_up(new_align) };
                    }

                    self.align = new_align;
                }
            } else {
                self.ptr = new_align.dangling_thin();
            }
        }
        Ok(())
    }

    fn shrink_capacity_bytes_align_to(
        &mut self,
        min_capacity: usize,
        min_byte_capacity: usize,
        min_align: ValidAlign,
    ) {
        self.elems_info.shrink_to(min_capacity);

        let old_align = self.align;
        let new_align = cmp::max(cmp::min(min_align, old_align), self.max_align_of_elems());

        debug_assert!(new_align <= old_align);

        let need_to_realign_elems = new_align < old_align && self.len() > 1;
        if need_to_realign_elems {
            // SAFETY: checked len, new vs old, max_align_of_elems above
            unsafe { self.realign_down(new_align) }
        }

        // SAFETY: Can't overflow, otherwise old offsets would be invalids
        let new_aligned_byte_len = unsafe { self.unaligned_byte_len().unchecked_pad_to(new_align) };

        let old_byte_capacity = self.byte_capacity;
        let new_byte_capacity = cmp::max(
            // SAFETY: `old_byte_capacity` is a valid
            // `ValidSizeUnaligned`, and result of `cmp::min`
            // can't be bigger than it
            unsafe {
                ValidSizeUnaligned::new_unchecked(cmp::min(
                    min_byte_capacity,
                    old_byte_capacity.get(),
                ))
            },
            new_aligned_byte_len,
        );

        debug_assert!(new_byte_capacity <= old_byte_capacity);

        if new_byte_capacity < old_byte_capacity || new_align < old_align {
            // SAFETY: cap and align are valid as they come from the vec
            let old_layout = unsafe { old_byte_capacity.as_layout_with_align_unchecked(old_align) };

            if new_byte_capacity > ValidSizeUnaligned::ZERO {
                let new_layout =
                    // SAFETY: cap and align are <= old (valid) cap and align
                    unsafe { new_byte_capacity.as_layout_with_align_unchecked(new_align) };

                // `shrink` can unwind, in which case we need to make sure
                // we realign everything back to how it was.

                struct Realigner<'a, T: ?Sized> {
                    vec: &'a mut UnalignedVecInner<T>,
                    new_align: ValidAlign,
                }

                impl<'a, T: ?Sized> Drop for Realigner<'a, T> {
                    #[inline]
                    fn drop(&mut self) {
                        let old_align = self.vec.align;
                        self.vec.align = self.new_align;

                        // SAFETY: old_align > new_align, checked self.len(),
                        // adjusted `self.align`
                        unsafe { self.vec.realign_up(old_align) }

                        self.vec.align = old_align;
                    }
                }

                let alloc_ptr = self.ptr.cast();

                // https://github.com/rust-lang/rust-clippy/issues/9427
                #[allow(clippy::unnecessary_lazy_evaluations)]
                let realigner = need_to_realign_elems.then(|| Realigner {
                    vec: self,
                    new_align,
                });

                let shrink_result =
                    // SAFETY: cap and align are <= old (valid) cap and align.
                    // old layout and ptr come from the vec.
                    unsafe { alloc::Global.shrink(alloc_ptr, old_layout, new_layout) };
                let Ok(new_ptr) = shrink_result else {
                    // `realigner` will be dropped, restoring offsets
                    return;
                };

                mem::forget(realigner);

                self.byte_capacity = ValidSizeUnaligned::new_squished_to(new_ptr.len(), new_align);
                self.ptr = new_ptr.cast();
            } else {
                if old_byte_capacity > ValidSizeUnaligned::ZERO {
                    // SAFETY: `old_layout` components come from the vec
                    unsafe { alloc::Global.deallocate(self.ptr.cast(), old_layout) }

                    self.byte_capacity = ValidSizeUnaligned::ZERO;
                }

                self.ptr = new_align.dangling_thin();
            }

            self.align = new_align;
        }
    }

    unsafe fn insert_unchecked(
        &mut self,
        index: usize,
        element: T,
        unaligned_size_of_val: ValidSizeUnaligned,
    ) {
        debug_assert!(index <= self.len());
        debug_assert!(self.capacity() > self.len());

        // SAFETY: preconditions of function
        let aligned_size_of_val = unsafe { unaligned_size_of_val.unchecked_pad_to(self.align) };

        debug_assert!(
            self.byte_capacity() >= (self.aligned_byte_len().get() + aligned_size_of_val.get())
        );
        debug_assert!(self.align() >= mem::align_of_val(&element));

        let metadata =
            <T as SplitMetadata>::Remainder::from_metadata(core::ptr::metadata(&element));

        // SAFETY: preconditions of function
        unsafe {
            let start_offset = self.start_offset_of_unchecked(index);
            let how_much_to_move = self.unaligned_byte_len().unchecked_sub(start_offset);

            let start_ptr = self.ptr.cast::<u8>().as_ptr().add(index);

            ptr::copy(
                start_ptr,
                start_ptr.add(aligned_size_of_val.get()),
                how_much_to_move.get(),
            );

            ptr::copy_nonoverlapping(
                addr_of!(element).cast(),
                start_ptr,
                unaligned_size_of_val.get(),
            );

            for ElementInfo { end_offset, .. } in self.elems_info.get_unchecked_mut(index..) {
                *end_offset = end_offset.unchecked_add(aligned_size_of_val);
            }

            self.elems_info.insert_unchecked(
                index,
                ElementInfo {
                    metadata,
                    end_offset: start_offset.unchecked_add(unaligned_size_of_val),
                },
                (),
            );
        }

        mem::forget_unsized(element);
    }

    unsafe fn insert_with_unchecked(
        &mut self,
        index: usize,
        value: Emplacable<T, impl EmplacableFn<T>>,
    ) {
        /// Helper to ensure elements are moved back
        /// where they belong in case `inner_closure`
        /// panics.
        struct ElementShifterBacker {
            ptr_to_index: *mut u8,
            num_bytes_to_shift: ValidSizeUnaligned,
            shift_by_bytes: ValidSizeUnaligned,
        }

        impl Drop for ElementShifterBacker {
            #[inline]
            fn drop(&mut self) {
                // SAFETY: shifting elements back in case of drop
                unsafe {
                    ptr::copy(
                        self.ptr_to_index.add(self.shift_by_bytes.get()),
                        self.ptr_to_index,
                        self.num_bytes_to_shift.get(),
                    );
                }
            }
        }

        debug_assert!(index <= self.len());

        let emplacable_closure = value.into_fn();

        let emplacer_closure =
            &mut |layout, metadata, inner_closure: &mut dyn FnMut(*mut PhantomData<T>)| {
                let (unaligned_size_of_val, align_of_val) = decompose(layout);

                let reserve_result = self.try_reserve_exact_capacity_bytes_align(
                    1,
                    unaligned_size_of_val.get(),
                    align_of_val,
                );
                unwrap_try_reserve_result(reserve_result);

                let aligned_size_of_val =
                    // SAFETY: `try_reserve` would have failed if this could fail
                    unsafe { unaligned_size_of_val.unchecked_pad_to(self.align) };

                // SAFETY: precondition of function
                let start_offset = unsafe { self.start_offset_of_unchecked(index) };

                // SAFETY: getting pointer to element
                let ptr_to_elem = unsafe { self.ptr.cast::<u8>().as_ptr().add(start_offset.get()) };

                let unaligned_len = self.unaligned_byte_len();

                // SAFETY: by precondition of function
                let num_bytes_to_shift = unsafe { unaligned_len.unchecked_sub(start_offset) };

                let shifter_backer = ElementShifterBacker {
                    ptr_to_index: ptr_to_elem,
                    num_bytes_to_shift,
                    shift_by_bytes: aligned_size_of_val,
                };

                // SAFETY: copying elements right to make room
                unsafe {
                    ptr::copy(
                        ptr_to_elem,
                        ptr_to_elem.add(aligned_size_of_val.get()),
                        num_bytes_to_shift.get(),
                    );
                }

                // If this unwinds, `shifter_backer` will be dropped
                // and the elements will be moved back where they belong.
                inner_closure(ptr_to_elem.cast());

                // `inner_closure` succeeded, so don't want to move elements back now!
                mem::forget(shifter_backer);

                // SAFETY: by precondition of function
                let elems_to_move_back = unsafe { self.elems_info.get_unchecked_mut(index..) };

                for ElementInfo { end_offset, .. } in elems_to_move_back {
                    // SAFETY: make the offsets correct again
                    *end_offset = unsafe { end_offset.unchecked_add(aligned_size_of_val) };
                }

                // SAFETY: reserved memory earlier
                unsafe {
                    self.elems_info.insert_unchecked(
                        index,
                        ElementInfo {
                            metadata: <T as SplitMetadata>::Remainder::from_metadata(metadata),
                            end_offset: start_offset.unchecked_add(unaligned_size_of_val),
                        },
                        (),
                    );
                }
            };

        // SAFETY: `emplacer_closure` runs the closure with a valid pointer to `index`
        let emplacer = unsafe { Emplacer::from_fn(emplacer_closure) };

        emplacable_closure(emplacer);
    }

    unsafe fn remove_into_unchecked(&mut self, index: usize, emplacer: &mut Emplacer<'_, T>) {
        debug_assert!(index < self.len());

        // We can't remove the metadata yet, as `emplacer_closure` might unwind,
        // so we can't leave vec metadata in an invalid state.
        // SAFETY: by precondition of function
        let removed_elem_metadata = unsafe { self.elems_info.get_unchecked(index) };

        let ElementInfo {
            metadata,
            end_offset,
        } = removed_elem_metadata;

        // SAFETY: precondition of function
        let start_offset = unsafe { self.start_offset_of_unchecked(index) };

        // SAFETY: start_offset < end_offset
        let unaligned_size_of_val = unsafe { end_offset.unchecked_sub(start_offset) };

        // SAFETY: `val` comes from the vec so must be paddable
        let aligned_size_of_val = unsafe { unaligned_size_of_val.unchecked_pad_to(self.align) };

        let metadata = metadata.as_metadata(unaligned_size_of_val);

        // Get pointer to the element we are popping out of the vec
        // SAFETY: offset comes from vec
        let ptr_to_elem = unsafe {
            self.ptr
                .as_ptr()
                .cast_const()
                .cast::<u8>()
                .add(start_offset.get())
        };

        let wide_ptr_to_elem: *const T = ptr::from_raw_parts(ptr_to_elem.cast(), metadata);

        // SAFETY: the element is still initialized at this point
        let align_of_val = ValidAlign::of_val(unsafe { &*wide_ptr_to_elem });

        // Copy element into the place

        // SAFETY: we call the closure right after we unwrap it
        let emplacer_closure = unsafe { emplacer.into_fn() };

        emplacer_closure(
            // SAFETY: `size_of_val` comes from the vec
            unsafe { unaligned_size_of_val.as_layout_with_align_unchecked(align_of_val) },
            metadata,
            &mut |out_ptr| {
                if !out_ptr.is_null() {
                    // SAFETY: we are allowed to copy `size_of_val` bytes into `out_ptr`,
                    // by the preconditions of `Emplacer::new`
                    unsafe {
                        ptr::copy_nonoverlapping(
                            ptr_to_elem,
                            out_ptr.cast::<u8>(),
                            unaligned_size_of_val.get(),
                        );
                    }
                } else {
                    // SAFETY: we adjust vec metadata right after, so this won't be double-dropped
                    unsafe { wide_ptr_to_elem.cast_mut().drop_in_place() }
                }
            },
        );

        // Now that `emplacer_closure` has run successfuly, we don't need to worry
        // about exception safety anymore.
        // FIXME elide bounds check
        self.elems_info.remove(index);

        for ElementInfo { end_offset, .. } in
            // SAFETY: `index` in range by preconditions of function.
            unsafe { self.elems_info.get_unchecked_mut(index..) }
        {
            // SAFETY: `end_fooset >= size_of_val` for elements following something
            // of size `size_of_val`
            unsafe {
                *end_offset = end_offset.unchecked_sub(aligned_size_of_val);
            }
        }

        let unaligned_len = self.unaligned_byte_len();

        // SAFETY: new end of vec can't be to the left of old start of elem at `index`
        let how_much_to_move = unsafe { unaligned_len.unchecked_sub(start_offset) };

        // SAFETY: copying elements back where they belong
        unsafe {
            ptr::copy(
                ptr_to_elem.add(aligned_size_of_val.get()),
                ptr_to_elem.cast_mut(),
                how_much_to_move.get(),
            );
        }
    }

    #[inline]
    unsafe fn push_unchecked(&mut self, value: T, size_of_val: ValidSizeUnaligned) {
        debug_assert!(self.capacity() - self.len() > 0);

        debug_assert!(self.byte_capacity() >= (self.aligned_byte_len().get() + size_of_val.get()));
        debug_assert!(self.align() >= mem::align_of_val(&value));

        let metadata = <T as SplitMetadata>::Remainder::from_metadata(core::ptr::metadata(&value));
        let start_offset = self.aligned_byte_len();

        // SAFETY: preconditions of function
        unsafe {
            ptr::copy_nonoverlapping(
                addr_of!(value).cast(),
                self.ptr.as_ptr().cast::<u8>().add(start_offset.get()),
                size_of_val.get(),
            );

            self.elems_info.push_unchecked(
                ElementInfo {
                    metadata,
                    end_offset: start_offset.unchecked_add(size_of_val),
                },
                (),
            );
        }

        mem::forget_unsized(value);
    }

    fn push_with(&mut self, value: Emplacable<T, impl EmplacableFn<T>>) {
        let emplacable_closure = value.into_fn();

        let emplacer_closure =
            &mut |layout: Layout, metadata, inner_closure: &mut dyn FnMut(*mut PhantomData<T>)| {
                let (size_of_val, align_of_val) = decompose(layout);

                let reserve_result =
                    self.try_reserve_exact_capacity_bytes_align(1, layout.size(), align_of_val);
                unwrap_try_reserve_result(reserve_result);

                let start_offset = self.aligned_byte_len();

                // SAFETY: getting pointer to end of allocation
                let ptr_to_elem = unsafe { self.ptr.cast::<u8>().as_ptr().add(start_offset.get()) };

                inner_closure(ptr_to_elem.cast());

                let elem_info: ElementInfo<T> = ElementInfo {
                    metadata: <T as SplitMetadata>::Remainder::from_metadata(metadata),
                    // SAFETY: neither operand can overflow `isize`, so sum
                    // can't overflow `usize`
                    end_offset: unsafe { start_offset.unchecked_add(size_of_val) },
                };

                // SAFETY: `emplacable` wrote new element at end of vec,
                // and we have reserved the needed space
                unsafe { self.elems_info.push_unchecked(elem_info, ()) };
            };

        // SAFETY: `emplacer_closure` runs the closure with a valid pointer to the end of the vec
        let emplacer = unsafe { Emplacer::from_fn(emplacer_closure) };

        emplacable_closure(emplacer);
    }

    #[inline]
    unsafe fn pop_into_unchecked(&mut self, emplacer: &mut Emplacer<'_, T>) {
        debug_assert!(!self.elems_info.is_empty());

        // SAFETY: precondition of function
        let last_elem_metadata = unsafe { self.elems_info.pop().unwrap_unchecked() };

        let ElementInfo {
            metadata,
            end_offset,
        } = last_elem_metadata;

        let start_offset = self.aligned_byte_len();

        // SAFETY: start_offset < end_offset
        let size_of_val = unsafe { end_offset.unchecked_sub(start_offset) };

        let metadata = metadata.as_metadata(size_of_val);

        // Get pointer to the element we are popping out of the vec
        // SAFETY: offset comes from vec
        let ptr_to_elem = unsafe {
            self.ptr
                .as_ptr()
                .cast_const()
                .cast::<u8>()
                .add(start_offset.get())
        };

        let wide_ptr_to_elem: *const T = ptr::from_raw_parts(ptr_to_elem.cast(), metadata);

        // SAFETY: the element is still initialized at this point
        let align_of_val = ValidAlign::of_val(unsafe { &*wide_ptr_to_elem });

        // Copy element into the place

        // SAFETY: we call the closure right after we unwrap it
        let emplace_closure = unsafe { emplacer.into_fn() };

        emplace_closure(
            // SAFETY: `size_of_val` comes from the vec
            unsafe { size_of_val.as_layout_with_align_unchecked(align_of_val) },
            metadata,
            &mut |out_ptr| {
                if !out_ptr.is_null() {
                    // SAFETY: we are allowed to copy `size_of_val` bytes into `out_ptr`,
                    // by the preconditions of `Emplacer::new`
                    unsafe {
                        ptr::copy_nonoverlapping(
                            ptr_to_elem,
                            out_ptr.cast::<u8>(),
                            size_of_val.get(),
                        );
                    }
                } else {
                    // SAFETY: we adjusted vec metadata earlier, so this won't be double-dropped
                    unsafe { wide_ptr_to_elem.cast_mut().drop_in_place() }
                }
            },
        );
    }

    #[inline]
    fn len(&self) -> usize {
        self.elems_info.len()
    }

    #[inline]
    unsafe fn get_unchecked_raw(&self, index: usize) -> NonNull<T> {
        debug_assert!(index < self.len());

        // SAFETY: see individual comments inside block
        unsafe {
            // SAFETY: precondition of method
            let start_offset = self.start_offset_of_unchecked(index);
            let &ElementInfo {
                end_offset,
                metadata,
            } = self.elems_info.get_unchecked(index);

            // SAFETY: end >= start
            let size_of_val = end_offset.unchecked_sub(start_offset);
            let metadata = metadata.as_metadata(size_of_val);

            // SAFETY: `start_offset` in range of allocation
            NonNull::from_raw_parts(
                NonNull::new_unchecked(self.ptr.as_ptr().cast::<u8>().add(start_offset.get()))
                    .cast(),
                metadata,
            )
        }
    }

    #[inline]
    fn iter(&self) -> Self::Iter<'_> {
        UnalignedIter {
            elems_info: self.elems_info.iter(),
            ptr: self.ptr,
            start_offset: ValidSizeUnaligned::ZERO,
            align: self.align,
        }
    }

    #[inline]
    fn iter_mut(&mut self) -> Self::IterMut<'_> {
        UnalignedIterMut {
            elems_info: self.elems_info.iter(),
            ptr: self.ptr,
            start_offset: ValidSizeUnaligned::ZERO,
            align: self.align,
        }
    }

    #[inline]
    fn from_sized<S>(vec: ::alloc::vec::Vec<S>) -> Self
    where
        S: Unsize<T>,
    {
        let mut vec = ManuallyDrop::new(vec);
        let len_elems = vec.len();
        let cap_elems = vec.capacity();
        let heap_ptr = vec.as_mut_ptr();
        let heap_ptr_unsized: *mut T = heap_ptr;
        let metadata =
            <T as SplitMetadata>::Remainder::from_metadata(ptr::metadata(heap_ptr_unsized));
        // SAFETY: ptr comes from vec, can't be null
        let heap_ptr_thin: NonNull<()> = unsafe { NonNull::new_unchecked(heap_ptr_unsized.cast()) };

        // SAFETY: can't overflow, as otherwise allocation would be overflowing
        let byte_capacity = unsafe { cap_elems.unchecked_mul(mem::size_of::<S>()) };

        // SAFETY: same as above
        let byte_capacity = unsafe { ValidSizeUnaligned::new_unchecked(byte_capacity) };

        let elems_info = (0..len_elems)
            .map(|index| ElementInfo {
                metadata,
                // SAFETY: can't overflow, as otherwise allocation would be overflowing
                end_offset: unsafe {
                    ValidSizeUnaligned::new_unchecked(index.unchecked_mul(mem::size_of::<S>()))
                },
            })
            .collect();

        let elems_info = ManuallyDrop::new(elems_info);

        Self {
            ptr: heap_ptr_thin,
            byte_capacity,
            elems_info,
            align: S::ALIGN,
            _marker: PhantomData,
        }
    }
}

impl<T: ?Sized> UnsizedVecImpl for T {
    default type Impl = UnalignedVecInner<T>;
}

macro_rules! iter_ref {
    ($iter_ty:ident, $from_raw_parts:ident $($muta:ident)?) => {
        pub(in super::super) struct $iter_ty<'a, T: ?Sized> {
            elems_info: core::slice::Iter<'a, ElementInfo<T>>,
            ptr: NonNull<()>,
            start_offset: ValidSizeUnaligned,
            align: ValidAlign,
        }

        impl<'a, T: ?Sized + 'a> Iterator for $iter_ty<'a, T> {
            type Item = &'a $($muta)? T;

            #[inline]
            fn next(&mut self) -> Option<Self::Item> {
                let ElementInfo {
                    metadata,
                    end_offset,
                } = *self.elems_info.next()?;

                // SAFETY: end of element can't be smaller than start
                let size_of_val = unsafe { end_offset.unchecked_sub(self.start_offset) };
                let metadata = metadata.as_metadata(size_of_val);

                let start_of_alloc = self.ptr.as_ptr().cast::<u8>();
                // SAFETY: offset is within allocation
                let thin_ptr_to_elem = unsafe { start_of_alloc.add(self.start_offset.get()) };
                let wide_ptr = ptr::$from_raw_parts(thin_ptr_to_elem.cast(), metadata);

                // SAFETY: pointer to element of vec
                let wide_ref = unsafe { & $($muta)? *wide_ptr };

                // SAFETY: align comes from the vec
                self.start_offset = unsafe { end_offset.unchecked_pad_to(self.align) };

                Some(wide_ref)
            }

            #[inline]
            fn size_hint(&self) -> (usize, Option<usize>) {
                self.elems_info.size_hint()
            }

            #[inline]
            fn count(self) -> usize
            where
                Self: Sized,
            {
                self.elems_info.count()
            }

            #[inline]
            fn nth(&mut self, n: usize) -> Option<Self::Item> {
                let start_offset = n
                    .checked_sub(1)
                    .and_then(|n| self.elems_info.nth(n))
                    .copied()
                    // SAFETY: offset comes from the vec
                    .map_or(ValidSizeUnaligned::ZERO, |e_i| unsafe {
                        e_i.end_offset.unchecked_pad_to(self.align)
                    });

                let ElementInfo {
                    metadata,
                    end_offset,
                } = *self.elems_info.next()?;

                // SAFETY: end of element can't be smaller than start`
                let size_of_val = unsafe { end_offset.unchecked_sub(start_offset) };
                let metadata = metadata.as_metadata(size_of_val);

                let start_of_alloc = self.ptr.as_ptr().cast::<u8>();
                // SAFETY: offset is within allocation
                let thin_ptr_to_elem = unsafe { start_of_alloc.add(start_offset.get()) };
                let wide_ptr = ptr::$from_raw_parts(thin_ptr_to_elem.cast(), metadata);

                // SAFETY: pointer to element of vec
                let wide_ref = unsafe { & $($muta)? *wide_ptr };

                // SAFETY: offset comes from the vec
                self.start_offset = unsafe { end_offset.unchecked_pad_to(self.align) };

                Some(wide_ref)
            }

            #[inline]
            fn last(mut self) -> Option<Self::Item>
            where
                Self: Sized,
            {
                self.nth(self.elems_info.len().checked_sub(1)?)
            }
        }

        impl<'a, T: ?Sized + 'a> DoubleEndedIterator for $iter_ty<'a, T> {
            #[inline]
            fn next_back(&mut self) -> Option<Self::Item> {
                let ElementInfo {
                    metadata,
                    end_offset,
                } = *self.elems_info.next_back()?;

                let start_offset = self
                    .elems_info
                    .as_slice()
                    .last()
                    // SAFETY: offset comes from the vec
                    .map_or(ValidSizeUnaligned::ZERO, |e_i| unsafe {
                        e_i.end_offset.unchecked_pad_to(self.align)
                    });

                // SAFETY: end of element can't be smaller than start
                let size_of_val = unsafe { end_offset.unchecked_sub(start_offset) };
                let metadata = metadata.as_metadata(size_of_val);

                let start_of_alloc = self.ptr.as_ptr().cast::<u8>();
                // SAFETY: offset is within allocation
                let thin_ptr_to_elem = unsafe { start_of_alloc.add(start_offset.get()) };
                let wide_ptr = ptr::$from_raw_parts(thin_ptr_to_elem.cast(), metadata);

                // SAFETY: pointer to element of vec
                let wide_ref = unsafe { & $($muta)? *wide_ptr };

                Some(wide_ref)
            }
        }

        impl<'a, T: ?Sized + 'a> ExactSizeIterator for $iter_ty<'a, T> {
            #[inline]
            fn len(&self) -> usize {
                self.elems_info.len()
            }
        }

        impl<'a, T: ?Sized + 'a> FusedIterator for $iter_ty<'a, T> {}
    };
}

iter_ref!(UnalignedIter, from_raw_parts);
iter_ref!(UnalignedIterMut, from_raw_parts_mut mut);