1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
// Copyright (c) 2024 Ken Barker
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//! The `intersection` module contains functions for calculating great-circle
//! intersections using vectors.
//!
//! A pair of great circles intersect at two points unless they are coincident.
//! For example, points `u` and `v` in *Figure1*.
//!
//! 
//! *Figure 1 A pair of intersecting great circles*
//!
//! A great circle intersection point can simply be calculated by normalizing
//! the [cross product](https://en.wikipedia.org/wiki/Cross_product) of their
//! pole vectors.
//! If the resulting vector is too small to normalize, then the great circles
//! are coincident, in which case they effectively *intersect* everywhere.
//!
//! If a pair of `Arc`s are on coincident great circles,
//! `calculate_coincident_arc_distances` calculates the distances between
//! `Arc` ends, zero if the `Arc`s overlap.
//!
//! Otherwise `use_antipodal_point` determines which intersection point
//! is closer to the [centroid](https://en.wikipedia.org/wiki/Centroid)
//! of the `Arc`s midpoints.
//! `calculate_intersection_distances` then calculates great-circle distances
//! along the `Arc`s to the intersection point.
use super::{calculate_great_circle_atd, normalise, sq_distance, Vector3d, MIN_SQ_DISTANCE};
use angle_sc::{max, Radians};
/// Calculate an intersection point between the poles of two Great Circles.
/// See: <http://www.movable-type.co.uk/scripts/latlong-vectors.html#intersection>
/// * `pole1`, `pole2` the poles.
///
/// return an intersection point or None if the poles represent coincident Great Circles.
#[must_use]
pub fn calculate_intersection_point(pole1: &Vector3d, pole2: &Vector3d) -> Option<Vector3d> {
normalise(&pole1.cross(pole2))
}
/// Calculate the great circle distances to an intersection point from the
/// start points of a pair of great circle arcs, on different great circles.
/// * `a1`, `a2` the start points of the great circle arcs
/// * `pole1`, `pole2` the poles of the great circle arcs
/// * `c` the intersection point
///
/// returns a pair of great circle distances along the arcs to the
/// intersection point in `Radians`.
#[must_use]
pub fn calculate_intersection_distances(
a1: &Vector3d,
pole1: &Vector3d,
a2: &Vector3d,
pole2: &Vector3d,
c: &Vector3d,
) -> (Radians, Radians) {
(
calculate_great_circle_atd(a1, pole1, c),
calculate_great_circle_atd(a2, pole2, c),
)
}
/// Whether an intersection point is within an `Arc`.
/// * `distance` - the along track distance to the point from the start of the `Arc`.
/// * `length` the length of the `Arc`.
///
/// return true if the intersection point is within the `Arc`, false otherwise.
#[must_use]
pub fn is_within(distance: f64, length: f64) -> bool {
(-f64::EPSILON <= distance) && (distance <= length + (f64::EPSILON * (1.0 + length)))
}
/// Calculate the great-circle distances along a pair of `Arc`s on coincident
/// Great Circles to their closest (reference) points.
/// * `gc_d` the great-circle distance between the arc start points.
/// * `reciprocal` whether the arcs are in reciprocal directions.
/// * `arc1_length`, `arc2_length` the `Arc` lengths in `Radians`.
///
/// returns the distances along the first `Arc` and second `Arc` to their closest
/// (reference) points in `Radians`.
#[must_use]
pub fn calculate_coincident_arc_distances(
gc_d: Radians,
reciprocal: bool,
arc1_length: Radians,
arc2_length: Radians,
) -> (Radians, Radians) {
if reciprocal {
// if the arcs intersect
if is_within(gc_d.0, max(arc1_length, arc2_length).0) {
if gc_d <= arc2_length {
// The start of the first `Arc` is within the second `Arc`
(Radians(0.0), gc_d)
} else {
// The start of the second `Arc` is within the first `Arc`
(gc_d, Radians(0.0))
}
} else {
let abs_d = gc_d.abs();
// The distance between the `Arc` b ends
let b_d = abs_d.0 - arc1_length.0 - arc2_length.0;
// The distance between the `Arc` b ends around the Great Circle
let b_gc_d = if Radians(0.0) < gc_d {
b_d
} else {
core::f64::consts::TAU - b_d
};
if b_gc_d < abs_d.0 {
// The end of the second `Arc` is beyond the end of first `Arc`
(Radians(b_gc_d) + arc1_length, arc2_length)
} else {
// The start of the second `Arc` is before the start of first `Arc`
(-abs_d, Radians(0.0))
}
}
} else {
// The distance to the start of arc2 from the end of arc1
let b1a2 = if Radians(0.0) < gc_d {
gc_d.0 - arc1_length.0
} else {
core::f64::consts::TAU + gc_d.0 - arc1_length.0
};
// The distance to the start of arc1 from the end of arc2
let b2a1 = if Radians(0.0) < gc_d {
core::f64::consts::TAU - gc_d.0 - arc2_length.0
} else {
-gc_d.0 - arc2_length.0
};
if b2a1 < b1a2 {
// The start of the first arc is within the second arc
(Radians(0.0), Radians(b2a1 + arc2_length.0))
} else {
// The start of the second arc relative to the start of first arc.
(Radians(b1a2 + arc1_length.0), Radians(0.0))
}
}
}
/// Determine whether the antipodal point is closer to the centroid of the
/// `Arc`s.
///
/// * `point` a great-circle intersection point.
/// * `centroid` the centroid (geometric mean) of the `Arc`s mid points.
///
/// returns true if the antipodal intersection is closer to the `centroid`
/// of the `Arc`s otherwise returns false.
#[must_use]
pub fn use_antipodal_point(point: &Vector3d, centroid: &Vector3d) -> bool {
sq_distance(centroid, &(-*point)) < sq_distance(centroid, point)
}
/// Calculate the great-circle distances along a pair of arcs to their
/// closest intersection point or their coincident arc distances if the
/// `Arc`s are on coincident Great Circles.
/// * `a1`, `a2` the `Arc` start points.
/// * `pole1`, `pole1` the `Arc` poles.
/// * `length1`, `length2` the `Arc` lengths.
/// * `centroid` the centroid (geometric mean) of the `Arc`s mid points.
///
/// returns the distances along the first arc and second arc to the intersection
/// point or to their coincident arc distances if the arcs do not intersect.
#[must_use]
pub fn calculate_intersection_point_distances(
a1: &Vector3d,
pole1: &Vector3d,
length1: Radians,
a2: &Vector3d,
pole2: &Vector3d,
length2: Radians,
centroid: &Vector3d,
) -> (Radians, Radians) {
// Calculate the square of the Euclidean distance between the start points.
let sq_d = sq_distance(a1, a2);
if sq_d < MIN_SQ_DISTANCE {
(Radians(0.0), Radians(0.0))
} else {
calculate_intersection_point(pole1, pole2).map_or_else(
|| {
calculate_coincident_arc_distances(
calculate_great_circle_atd(a1, pole1, a2),
pole1.dot(pole2) < 0.0,
length1,
length2,
)
},
|c| {
// Find the closest intersection point
let c = if use_antipodal_point(&c, centroid) {
-c
} else {
c
};
calculate_intersection_distances(a1, pole1, a2, pole2, &c)
},
)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{vector, LatLong};
use angle_sc::{is_within_tolerance, Angle, Degrees};
#[test]
fn test_calculate_intersection_point() {
let lat_lon_south = LatLong::new(Degrees(-90.0), Degrees(0.0));
let south_pole = Vector3d::from(&lat_lon_south);
let lat_lon_north = LatLong::new(Degrees(90.0), Degrees(0.0));
let north_pole = Vector3d::from(&lat_lon_north);
let lat_lon_idl = LatLong::new(Degrees(0.0), Degrees(180.0));
let idl = Vector3d::from(&lat_lon_idl);
let equator_intersection = calculate_intersection_point(&south_pole, &north_pole);
assert!(equator_intersection.is_none());
let gc_intersection1 = calculate_intersection_point(&idl, &north_pole).unwrap();
let gc_intersection2 = calculate_intersection_point(&idl, &south_pole).unwrap();
assert_eq!(gc_intersection1, -gc_intersection2);
}
#[test]
fn test_calculate_intersection_distances() {
let start1 = LatLong::new(Degrees(-1.0), Degrees(-1.0));
let a1 = Vector3d::from(&start1);
let azimuth1 = Angle::from(Degrees(45.0));
let pole1 = vector::calculate_pole(
Angle::from(start1.lat()),
Angle::from(start1.lon()),
azimuth1,
);
let start2 = LatLong::new(Degrees(1.0), Degrees(-1.0));
let a2 = Vector3d::from(&start2);
let azimuth2 = Angle::from(Degrees(135.0));
let pole2 = vector::calculate_pole(
Angle::from(start2.lat()),
Angle::from(start2.lon()),
azimuth2,
);
let c = calculate_intersection_point(&pole1, &pole2).unwrap();
let (c1, c2) = calculate_intersection_distances(&a1, &pole1, &a2, &pole2, &c);
assert!(is_within_tolerance(-3.1169124762478333, c1.0, f64::EPSILON));
assert!(is_within_tolerance(-3.1169124762478333, c2.0, f64::EPSILON));
// Calculate the centre of the arc start points
let centre_point = vector::normalise(&(a1 + a2)).unwrap();
assert!(sq_distance(&c, ¢re_point) > 2.0);
// opposite intersection point
let d = -c;
assert!(sq_distance(&d, ¢re_point) <= 2.0);
let (d1, d2) = calculate_intersection_distances(&a1, &pole1, &a2, &pole2, &d);
assert!(is_within_tolerance(
0.024680177341956263,
d1.0,
f64::EPSILON
));
assert!(is_within_tolerance(
0.024680177341956263,
d2.0,
f64::EPSILON
));
// Same start points and intersection point
let (e1, e2) = calculate_intersection_distances(&a1, &pole1, &a1, &pole2, &a1);
assert_eq!(0.0, e1.0);
assert_eq!(0.0, e2.0);
}
#[test]
fn test_is_within() {
assert!(!is_within(-2.0 * f64::EPSILON, 2.0));
assert!(is_within(-f64::EPSILON, 2.0));
assert!(is_within(2.0 * (1.0 + f64::EPSILON), 2.0));
assert!(!is_within(2.0 * (1.0 + 3.0 * f64::EPSILON), 2.0));
}
#[test]
fn test_calculate_coincident_arc_distances() {
let zero = Radians(0.0);
let length1 = Radians(0.25);
let length2 = Radians(0.75);
let result0 = calculate_coincident_arc_distances(length2, true, length2, length1);
assert_eq!(length2, result0.0);
assert_eq!(zero, result0.1);
let result1 = calculate_coincident_arc_distances(length2, true, length1, length2);
assert_eq!(zero, result1.0);
assert_eq!(length2, result1.1);
let result2 = calculate_coincident_arc_distances(Radians(1.0), true, length1, length2);
assert_eq!(length1, result2.0);
assert_eq!(length2, result2.1);
let result3 = calculate_coincident_arc_distances(Radians(1.5), true, length1, length2);
assert_eq!(length2, result3.0);
assert_eq!(length2, result3.1);
let result4 = calculate_coincident_arc_distances(Radians(-1.5), true, length1, length2);
assert_eq!(Radians(-1.5), result4.0);
assert_eq!(zero, result4.1);
let result5 = calculate_coincident_arc_distances(Radians(-1.0), false, length1, length2);
assert_eq!(zero, result5.0);
assert_eq!(Radians(1.0), result5.1);
let result6 = calculate_coincident_arc_distances(Radians(1.0), false, length1, length2);
assert_eq!(Radians(1.0), result6.0);
assert_eq!(zero, result6.1);
let result7 = calculate_coincident_arc_distances(-length2, false, length1, length2);
assert_eq!(zero, result7.0);
assert_eq!(length2, result7.1);
let result8 = calculate_coincident_arc_distances(length1, false, length1, length2);
assert_eq!(length1, result8.0);
assert_eq!(zero, result8.1);
}
}