1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
// Copyright (c) 2024 Ken Barker
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//! The `intersection` module contains functions for calculating great circle
//! intersections using vectors.
//!
//! A pair of great circles intersect at two points unless they are the same
//! (or opposing) great circles.
//! For example, points `u` and `v` in *Figure1*.
//!
//! 
//! *Figure 1 A pair of intersecting great circles*
//!
//! A great circle intersection point can simply be calculated from the
//! [cross product](https://en.wikipedia.org/wiki/Cross_product) of their pole
//! vectors.
//! If the resulting vector is too small to normalize, then the great circles
//! are the same or opposing, in which case they effectively *intersect*
//! everywhere.
//!
//! The tricky part is choosing which of the two intersection points to use.
//! Most of the functions in this module perform that task.
use super::{distance, sin_atd, sq_distance, Vector3d, MIN_NORM, MIN_SQ_DISTANCE};
use crate::great_circle;
use angle_sc::{is_small, max, Radians};
/// Calculate an intersection point between the poles of two Great Circles.
/// See: <http://www.movable-type.co.uk/scripts/latlong-vectors.html#intersection>
/// * `pole1`, `pole2` the poles.
///
/// return an intersection point or None if the poles are the same (or opposing) Great Circles.
#[must_use]
pub fn calculate_intersection_point(pole1: &Vector3d, pole2: &Vector3d) -> Option<Vector3d> {
let c = pole1.cross(pole2);
if is_small(c.norm(), MIN_NORM) {
None
} else {
Some(c.normalize())
}
}
/// Calculate the great circle distances to an intersection point from the
/// start points of a pair of great circle arcs, on different great circles.
/// * `a1`, `a2` the start points of the great circle arcs
/// * `pole1`, `pole2` the poles of the great circle arcs
/// * `c` the intersection point
///
/// returns a pair of great circle distances along the arcs to the
/// intersection point in Radians.
#[must_use]
pub fn calculate_intersection_distances(
a1: &Vector3d,
pole1: &Vector3d,
a2: &Vector3d,
pole2: &Vector3d,
c: &Vector3d,
) -> (Radians, Radians) {
let sq_d_a1c = sq_distance(a1, c);
let gc_d_a1c = if is_small(sq_d_a1c, MIN_SQ_DISTANCE) {
0.0
} else {
libm::copysign(
great_circle::e2gc_distance(libm::sqrt(sq_d_a1c)).0,
sin_atd(a1, pole1, c).0,
)
};
let sq_d_a2c = sq_distance(a2, c);
let gc_d_a2c = if is_small(sq_d_a2c, MIN_SQ_DISTANCE) {
0.0
} else {
libm::copysign(
great_circle::e2gc_distance(libm::sqrt(sq_d_a2c)).0,
sin_atd(a2, pole2, c).0,
)
};
(Radians(gc_d_a1c), Radians(gc_d_a2c))
}
/// Whether an intersection point is within an arc
/// * `ref_distance` the distance to the intersection point from the start
/// * `arc_length` the length of the arc.
///
/// return true if the point is within the arc, false otherwise.
#[must_use]
pub fn is_within(ref_distance: f64, arc_length: f64) -> bool {
(-core::f64::EPSILON <= ref_distance)
&& (ref_distance <= arc_length + (core::f64::EPSILON * (1.0 + arc_length)))
}
/// Determine whether the other intersection point is closer to the start
/// of both arcs.
/// * `ref1_distance`, `ref2_distance` the intersection distances.
/// * `arc1_length`, `arc2_length` the arc lengths.
///
/// return true if the other intersection point is closer to the arc starts,
/// false otherwise.
#[allow(clippy::similar_names)]
#[allow(clippy::if_not_else)]
#[must_use]
fn use_other_point(
ref1_distance: Radians,
ref2_distance: Radians,
arc1_length: Radians,
arc2_length: Radians,
) -> bool {
// is the intersection within both arcs?
let c_within_arc1 = is_within(ref1_distance.0, arc1_length.0);
let c_within_arc2 = is_within(ref2_distance.0, arc2_length.0);
if c_within_arc1 && c_within_arc2 {
return false;
}
// Calculate distances from the other intersection point
let other_distance1 = ref1_distance + Radians(core::f64::consts::PI);
let other_distance2 = ref2_distance + Radians(core::f64::consts::PI);
// is the other intersection within both arcs?
let d_within_arc1 = is_within(other_distance1.0, arc1_length.0);
let d_within_arc2 = is_within(other_distance2.0, arc2_length.0);
if d_within_arc1 && d_within_arc2 {
return true;
}
// if either intersection is within an arc
let c_within_arc = c_within_arc1 || c_within_arc2;
let d_within_arc = d_within_arc1 || d_within_arc2;
if c_within_arc != d_within_arc {
// whichever intersection is within an arc is closest
d_within_arc
} else {
// either both intersections are within an arc or neither are
// calculate the minimum length from a start point to an intersection
fn min_length(ref_length: Radians, within_arc: bool) -> f64 {
if within_arc {
0.0
} else {
libm::fabs(ref_length.0)
}
}
let min_c1 = min_length(ref1_distance, c_within_arc1);
let min_c2 = min_length(ref2_distance, c_within_arc2);
let max_c = max(min_c1, min_c2);
let min_d1 = min_length(other_distance1, d_within_arc1);
let min_d2 = min_length(other_distance2, d_within_arc2);
let max_d = max(min_d1, min_d2);
// use the intersection that is closest to the start of both arcs
max_d < max_c
}
}
/// Calculate the great circle distances to the closest intersection point from the
/// start points of a pair of great circle arcs, on different great circles.
/// * `a1`, `a2` the start points of the great circle arcs
/// * `pole1`, `pole2` the poles of the great circle arcs
/// * `c` an intersection point
///
/// returns a pair of great circle distances along the arcs to the
/// intersection point in Radians and a boolean indicating whether the antipodal
/// intersection point was used instead of the one given.
#[must_use]
pub fn calculate_closest_intersection_distances(
a1: &Vector3d,
pole1: &Vector3d,
length1: Radians,
a2: &Vector3d,
pole2: &Vector3d,
length2: Radians,
c: &Vector3d,
) -> (Radians, Radians, bool) {
let (arc1_a_c, arc2_a_c) = calculate_intersection_distances(a1, pole1, a2, pole2, c);
let use_antipodal_intersection = use_other_point(arc1_a_c, arc2_a_c, length1, length2);
if use_antipodal_intersection {
let (arc1_a_c, arc2_a_c) = calculate_intersection_distances(a1, pole1, a2, pole2, &-(*c));
(arc1_a_c, arc2_a_c, use_antipodal_intersection)
} else {
(arc1_a_c, arc2_a_c, use_antipodal_intersection)
}
}
/// Calculate the lengths along a pair of Arcs on the same (or reciprocal)
/// Great Circles to their closest (reference) points.
/// * `reciprocal` whether the arcs are in reciprocal directions.
/// * `a2_ahead` whether the start of arc2 is ahead of the start of arc1.
/// * `arc1_length`, `arc2_length` the arc lengths.
/// * `gc_d` the great circle distance between the arc start points.
///
/// returns the distances along the first arc and second arc to their closest
/// (reference) points.
#[must_use]
fn calc_same_gc_reference_lengths(
reciprocal: bool,
a2_ahead: bool,
arc1_length: Radians,
arc2_length: Radians,
gc_d: Radians,
) -> (Radians, Radians) {
const TWO_PI: f64 = 2.0 * core::f64::consts::PI;
if reciprocal {
let max_length = if arc1_length < arc2_length {
arc2_length
} else {
arc1_length
};
if a2_ahead && (gc_d <= max_length) {
return if gc_d <= arc2_length {
(Radians(0.0), gc_d)
} else {
(gc_d, Radians(0.0))
};
}
// The distance between b ends
let b_d = gc_d.0 - arc1_length.0 - arc2_length.0;
let b_gc_d = if a2_ahead { b_d } else { TWO_PI - b_d };
if b_gc_d < gc_d.0 {
(Radians(b_gc_d + arc1_length.0), arc2_length)
} else {
(-gc_d, Radians(0.0))
}
} else {
// The distance to the start of arc2 from the end of arc1
let b1a2 = if a2_ahead {
gc_d.0 - arc1_length.0
} else {
TWO_PI - gc_d.0 - arc1_length.0
};
// The distance to the start of arc1 from the end of arc2
let b2a1 = if a2_ahead {
TWO_PI - gc_d.0 - arc2_length.0
} else {
gc_d.0 - arc2_length.0
};
if b2a1 < b1a2 {
(Radians(0.0), Radians(b2a1 + arc2_length.0))
} else {
(Radians(b1a2 + arc1_length.0), Radians(0.0))
}
}
}
/// Calculate the distances along a pair of Arcs on the same (or reciprocal)
/// Great Circles to their closest (reference) points.
/// * `a1`, `a2` the arc start points.
/// * `pole1`, `pole1` the arc poles.
/// * `length1`, `length2` the arc lengths.
///
/// returns the distances along the first arc and second arc to their closest
/// (reference) points.
#[must_use]
pub fn calculate_same_gc_reference_distances(
a1: &Vector3d,
pole1: &Vector3d,
length1: Radians,
a2: &Vector3d,
pole2: &Vector3d,
length2: Radians,
gc_d: Radians,
) -> (Radians, Radians) {
let reciprocal = pole1.dot(pole2) < 0.0;
let a2_ahead = 0.0 < sin_atd(a1, pole1, a2).0;
calc_same_gc_reference_lengths(reciprocal, a2_ahead, length1, length2, gc_d)
}
/// Calculate the distances along a pair of Arcs on the same (or reciprocal)
/// Great Circles to their closest (reference) points.
/// * `a1`, `a2` the arc start points.
/// * `pole1`, `pole1` the arc poles.
/// * `length1`, `length2` the arc lengths.
///
/// returns the distances along the first arc and second arc to the intersection
/// point or to their closest (reference) points if the arcs do not intersect.
#[must_use]
pub fn calculate_intersection_point_distances(
a1: &Vector3d,
pole1: &Vector3d,
length1: Radians,
a2: &Vector3d,
pole2: &Vector3d,
length2: Radians,
) -> (Radians, Radians) {
// Calculate the great circle distance between the start points.
let gc_d = great_circle::e2gc_distance(distance(a1, a2));
if is_small(gc_d.0, great_circle::MIN_VALUE) {
(Radians(0.0), Radians(0.0))
} else {
calculate_intersection_point(pole1, pole2).map_or_else(
|| calculate_same_gc_reference_distances(a1, pole1, length1, a2, pole2, length2, gc_d),
|c| {
let (arc1_a_c, arc2_a_c, _) = calculate_closest_intersection_distances(
a1, pole1, length1, a2, pole2, length2, &c,
);
(arc1_a_c, arc2_a_c)
},
)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{vector, LatLong};
use angle_sc::{is_within_tolerance, Angle, Degrees};
#[test]
fn test_calculate_intersection_point() {
let lat_lon_south = LatLong::new(Degrees(-90.0), Degrees(0.0));
let south_pole = Vector3d::from(&lat_lon_south);
let lat_lon_north = LatLong::new(Degrees(90.0), Degrees(0.0));
let north_pole = Vector3d::from(&lat_lon_north);
let lat_lon_idl = LatLong::new(Degrees(0.0), Degrees(180.0));
let idl = Vector3d::from(&lat_lon_idl);
let equator_intersection = calculate_intersection_point(&south_pole, &north_pole);
assert!(equator_intersection.is_none());
let gc_intersection1 = calculate_intersection_point(&idl, &north_pole).unwrap();
let gc_intersection2 = calculate_intersection_point(&idl, &south_pole).unwrap();
assert_eq!(gc_intersection1, -gc_intersection2);
}
#[test]
fn test_calculate_intersection_distances() {
let start1 = LatLong::new(Degrees(-1.0), Degrees(-1.0));
let a1 = Vector3d::from(&start1);
let azimuth1 = Angle::from(Degrees(45.0));
let pole1 = vector::calculate_pole(
Angle::from(start1.lat()),
Angle::from(start1.lon()),
azimuth1,
);
let start2 = LatLong::new(Degrees(1.0), Degrees(-1.0));
let a2 = Vector3d::from(&start2);
let azimuth2 = Angle::from(Degrees(135.0));
let pole2 = vector::calculate_pole(
Angle::from(start2.lat()),
Angle::from(start2.lon()),
azimuth2,
);
let c = calculate_intersection_point(&pole1, &pole2).unwrap();
let (c1, c2) = calculate_intersection_distances(&a1, &pole1, &a2, &pole2, &c);
assert!(is_within_tolerance(
-3.1169124762478333,
c1.0,
core::f64::EPSILON
));
assert!(is_within_tolerance(
-3.1169124762478333,
c2.0,
core::f64::EPSILON
));
// opposite intersection point
let d = -c;
let (d1, d2) = calculate_intersection_distances(&a1, &pole1, &a2, &pole2, &d);
assert!(is_within_tolerance(
0.024680177341956263,
d1.0,
core::f64::EPSILON
));
assert!(is_within_tolerance(
0.024680177341956263,
d2.0,
core::f64::EPSILON
));
// Same start points and intersection point
let (e1, e2) = calculate_intersection_distances(&a1, &pole1, &a1, &pole2, &a1);
assert_eq!(0.0, e1.0);
assert_eq!(0.0, e2.0);
}
#[test]
fn test_use_other_point() {
// Within both arcs
assert!(!use_other_point(
Radians(1.0),
Radians(1.0),
Radians(1.0),
Radians(1.0)
));
// Within an arc
assert!(!use_other_point(
Radians(2.0),
Radians(1.0),
Radians(1.0),
Radians(1.0)
));
// Other within both arcs
assert!(use_other_point(
Radians(0.5 - core::f64::consts::PI),
Radians(0.5 - core::f64::consts::PI),
Radians(1.0),
Radians(1.0)
));
// Other within an arc
assert!(use_other_point(
Radians(0.5 - core::f64::consts::PI),
Radians(2.0),
Radians(1.0),
Radians(1.0)
));
// This closest within an arc
assert!(!use_other_point(
Radians(1.0),
Radians(2.0 - core::f64::consts::PI),
Radians(1.0),
Radians(1.0)
));
// Other closest within an arc
assert!(use_other_point(
Radians(1.5),
Radians(core::f64::consts::PI),
Radians(1.0),
Radians(1.0)
));
// This closest both within an arc
assert!(!use_other_point(
Radians(1.0),
Radians(1.0 - core::f64::consts::PI),
Radians(2.0),
Radians(1.0)
));
// Other closest both outside an arc
assert!(use_other_point(
Radians(2.0),
Radians(1.5 - core::f64::consts::PI),
Radians(1.0),
Radians(1.0)
));
}
#[test]
fn test_calc_same_gc_reference_lengths_1() {
let zero = Radians(0.0);
let length1 = Radians(0.25);
let length2 = Radians(0.75);
let result0 = calc_same_gc_reference_lengths(true, true, length2, length1, length2);
assert_eq!(length2, result0.0);
assert_eq!(zero, result0.1);
let result1 = calc_same_gc_reference_lengths(true, true, length1, length2, length2);
assert_eq!(zero, result1.0);
assert_eq!(length2, result1.1);
let result2 = calc_same_gc_reference_lengths(true, true, length1, length2, Radians(1.0));
assert_eq!(length1, result2.0);
assert_eq!(length2, result2.1);
let result3 = calc_same_gc_reference_lengths(true, true, length1, length2, Radians(1.5));
assert_eq!(length2, result3.0);
assert_eq!(length2, result3.1);
let result4 = calc_same_gc_reference_lengths(true, false, length1, length2, Radians(1.5));
assert_eq!(Radians(-1.5), result4.0);
assert_eq!(zero, result4.1);
let result5 = calc_same_gc_reference_lengths(false, false, length1, length2, Radians(1.0));
assert_eq!(zero, result5.0);
assert_eq!(Radians(1.0), result5.1);
let result6 = calc_same_gc_reference_lengths(false, true, length1, length2, Radians(1.0));
assert_eq!(Radians(1.0), result6.0);
assert_eq!(zero, result6.1);
let result7 = calc_same_gc_reference_lengths(false, false, length1, length2, length2);
assert_eq!(zero, result7.0);
assert_eq!(length2, result7.1);
let result8 = calc_same_gc_reference_lengths(false, true, length1, length2, length1);
assert_eq!(length1, result8.0);
assert_eq!(zero, result8.1);
}
}