1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
//! Bindings for the Unicorn emulator.
//!
//! You most likely want to use one of the Cpu structs (`CpuX86`, `CpuARM`, etc.).
//!
//! # Example use
//!
//! ```rust
//! extern crate unicorn;
//!
//! use unicorn::{Cpu, CpuX86, uc_handle};
//!
//! fn main() {
//!    let x86_code32 : Vec<u8> = vec![0x41, 0x4a]; // INC ecx; DEC edx
//!
//!    let mut emu = CpuX86::new(unicorn::Mode::MODE_32).expect("failed to instantiate emulator");
//!    emu.mem_map(0x1000, 0x4000, unicorn::PROT_ALL); 
//!    emu.mem_write(0x1000, &x86_code32); 
//!    emu.reg_write_i32(unicorn::RegisterX86::ECX, -10);
//!    emu.reg_write_i32(unicorn::RegisterX86::EDX, -50);
//!
//!    emu.emu_start(0x1000, (0x1000 + x86_code32.len()) as u64, 10 * unicorn::SECOND_SCALE, 1000);
//!    assert_eq!(emu.reg_read_i32(unicorn::RegisterX86::ECX), Ok((-9)));
//!    assert_eq!(emu.reg_read_i32(unicorn::RegisterX86::EDX), Ok((-51)));
//! }
//! ```
//! 
extern crate libc;
#[macro_use]
extern crate bitflags;

pub mod ffi;
pub mod arm64_const;
pub mod arm_const;
pub mod m68k_const;
pub mod mips_const;
pub mod sparc_const;
pub mod unicorn_const;
pub mod x86_const;

use ffi::*;
use std::mem;
use std::ffi::CStr;

pub use arm64_const::*;
pub use arm_const::*;
pub use m68k_const::*;
pub use mips_const::*;
pub use sparc_const::*;
pub use unicorn_const::*;
pub use x86_const::*;

pub const BINDINGS_MAJOR: u32 = 1;
pub const BINDINGS_MINOR: u32 = 0;

pub trait Register {
    fn to_i32(&self) -> i32;
}

impl Register for RegisterARM {
    fn to_i32(&self) -> i32 {
        *self as i32
    }
}

impl Register for RegisterARM64 {
    fn to_i32(&self) -> i32 {
        *self as i32
    }
}

impl Register for RegisterM68K {
    fn to_i32(&self) -> i32 {
        *self as i32
    }
}

impl Register for RegisterMIPS {
    fn to_i32(&self) -> i32 {
        *self as i32
    }
}

impl Register for RegisterSPARC {
    fn to_i32(&self) -> i32 {
        *self as i32
    }
}

impl Register for RegisterX86 {
    fn to_i32(&self) -> i32 {
        *self as i32
    }
}

pub trait Cpu {
    type Reg: Register;

    fn emu(&self) -> &Unicorn;

    /// Read an unsigned value from a register.
    fn reg_read(&self, reg: Self::Reg) -> Result<u64, Error> {
        self.emu().reg_read(reg.to_i32())
    }

    /// Read a signed 32-bit value from a register.
    fn reg_read_i32(&self, reg: Self::Reg) -> Result<i32, Error> {
        self.emu().reg_read_i32(reg.to_i32())
    }

    /// Write an unsigned value register.
    fn reg_write(&mut self, reg: Self::Reg, value: u64) -> Result<(), Error> {
        self.emu().reg_write(reg.to_i32(), value)
    }

    /// Write a signed 32-bit value to a register.
    fn reg_write_i32(&self, reg: Self::Reg, value: i32) -> Result<(), Error> {
        self.emu().reg_write_i32(reg.to_i32(), value)
    }

    /// Map a memory region in the emulator at the specified address.
    ///
    /// `address` must be aligned to 4kb or this will return `Error::ARG`.
    /// `size` must be a multiple of 4kb or this will return `Error::ARG`.
    fn mem_map(&self, address: u64, size: libc::size_t, perms: Protection) -> Result<(), Error> {
        self.emu().mem_map(address, size, perms)
    }

    /// Unmap a memory region.
    ///
    /// `address` must be aligned to 4kb or this will return `Error::ARG`.
    /// `size` must be a multiple of 4kb or this will return `Error::ARG`.
    fn mem_unmap(&self, address: u64, size: libc::size_t) -> Result<(), Error> {
        self.emu().mem_unmap(address, size)
    }

    /// Write a range of bytes to memory at the specified address.
    fn mem_write(&self, address: u64, bytes: &[u8]) -> Result<(), Error> {
        self.emu().mem_write(address, bytes)
    }

    /// Read a range of bytes from memory at the specified address.
    fn mem_read(&self, address: u64, size: usize) -> Result<(Vec<u8>), Error> {
        self.emu().mem_read(address, size)
    }

    /// Set the memory permissions for an existing memory region.
    ///
    /// `address` must be aligned to 4kb or this will return `Error::ARG`.
    /// `size` must be a multiple of 4kb or this will return `Error::ARG`.
    fn mem_protect(&self, address: u64, size: usize, perms: Protection) -> Result<(), Error> {
        self.emu().mem_protect(address, size, perms)
    }

    /// Returns a vector with the memory regions that are mapped in the emulator.
    fn mem_regions(&self) -> Result<Vec<MemRegion>, Error> {
        self.emu().mem_regions()
    }

    /// Emulate machine code for a specified duration.
    ///
    /// `begin` is the address where to start the emulation. The emulation stops if `until`
    /// is hit. `timeout` specifies a duration in microseconds after which the emulation is
    /// stopped (infinite execution if set to 0). `count` is the maximum number of instructions
    /// to emulate (emulate all the available instructions if set to 0).
    fn emu_start(&self, begin: u64, until: u64, timeout: u64, count: usize) -> Result<(), Error> {
        self.emu().emu_start(begin, until, timeout, count)
    }

    /// Stop the emulation.
    ///
    /// This is usually called from callback function in hooks.
    /// NOTE: For now, this will stop the execution only after the current block.
    fn emu_stop(&self) -> Result<(), Error> {
        self.emu().emu_stop()
    }

    /// Add a code hook.
    fn add_code_hook(&self,
                     hook_type: HookType,
                     begin: u64,
                     end: u64,
                     callback: extern "C" fn(engine: uc_handle,
                                             address: u64,
                                             size: u32,
                                             user_data: *mut u64)
                                            )
                     -> Result<uc_hook, Error> {
        self.emu().add_code_hook(hook_type, begin, end, callback)
    }

    /// Add a memory hook. 
    fn add_mem_hook(&self,
                    hook_type: HookType,
                    begin: u64,
                    end: u64,
                    callback: extern "C" fn(engine: uc_handle,
                                            mem_type: MemType,
                                            address: u64,
                                            size: i32,
                                            value: i64,
                                            user_data: *mut u64)
                                           )
                    -> Result<uc_hook, Error> {
        self.emu().add_mem_hook(hook_type, begin, end, callback)
    }

    /// Remove a hook.
    ///
    /// `hook` is the value returned by either `add_code_hook` or `add_mem_hook`.
    fn remove_hook(&self, hook: uc_hook) -> Result<(), Error> {
        self.emu().remove_hook(hook)
    }

    /// Return the last error code when an API function failed.
    ///
    /// Like glibc errno(), this function might not retain its old value once accessed.
    fn errno(&self) -> Error {
        self.emu().errno()
    }

    /// Query the internal status of the engine.
    ///
    /// Supported queries :
    ///
    /// - `Query::PAGE_SIZE` : the page size used by the emulator.
    /// - `Query::MODE` : the current hardware mode.
    fn query(&self, query: Query) -> Result<usize, Error> {
        self.emu().query(query)
    }
}

/// An ARM emulator instance.
pub struct CpuARM {
    emu: Unicorn,
}

impl CpuARM {
    /// Create an ARM emulator instance for the specified hardware mode.
    pub fn new(mode: Mode) -> Result<CpuARM, Error> {
        let emu = Unicorn::new(Arch::ARM, mode);
        match emu {
            Ok(x) => Ok(CpuARM { emu: x }),
            Err(x) => Err(x),
        }
    }
}

impl Cpu for CpuARM {
    type Reg = RegisterARM;

    fn emu(&self) -> &Unicorn {
        &self.emu
    }
}

/// An ARM64 emulator instance.
pub struct CpuARM64 {
    emu: Unicorn,
}

impl CpuARM64 {
    /// Create an ARM64 emulator instance for the specified hardware mode.
    pub fn new(mode: Mode) -> Result<CpuARM64, Error> {
        let emu = Unicorn::new(Arch::ARM64, mode);
        match emu {
            Ok(x) => Ok(CpuARM64 { emu: x }),
            Err(x) => Err(x),
        }
    }
}

impl Cpu for CpuARM64 {
    type Reg = RegisterARM64;

    fn emu(&self) -> &Unicorn {
        &self.emu
    }
}

/// A M68K emulator instance.
pub struct CpuM68K {
    emu: Unicorn,
}

impl CpuM68K {
    /// Create a M68K emulator instance for the specified hardware mode.
    pub fn new(mode: Mode) -> Result<CpuM68K, Error> {
        let emu = Unicorn::new(Arch::M68K, mode);
        match emu {
            Ok(x) => Ok(CpuM68K { emu: x }),
            Err(x) => Err(x),
        }
    }
}

impl Cpu for CpuM68K {
    type Reg = RegisterM68K;

    fn emu(&self) -> &Unicorn {
        &self.emu
    }
}

/// A MIPS emulator instance.
pub struct CpuMIPS {
    emu: Unicorn,
}

impl CpuMIPS {
    /// Create an MIPS emulator instance for the specified hardware mode.
    pub fn new(mode: Mode) -> Result<CpuMIPS, Error> {
        let emu = Unicorn::new(Arch::MIPS, mode);
        match emu {
            Ok(x) => Ok(CpuMIPS { emu: x }),
            Err(x) => Err(x),
        }
    }
}

impl Cpu for CpuMIPS {
    type Reg = RegisterMIPS;

    fn emu(&self) -> &Unicorn {
        &self.emu
    }
}

/// A SPARC emulator instance.
pub struct CpuSPARC {
    emu: Unicorn,
}

impl CpuSPARC {
    /// Create a SPARC emulator instance for the specified hardware mode.
    pub fn new(mode: Mode) -> Result<CpuSPARC, Error> {
        let emu = Unicorn::new(Arch::SPARC, mode);
        match emu {
            Ok(x) => Ok(CpuSPARC { emu: x }),
            Err(x) => Err(x),
        }
    }
}

impl Cpu for CpuSPARC {
    type Reg = RegisterSPARC;

    fn emu(&self) -> &Unicorn {
        &self.emu
    }
}

/// An X86 emulator instance.
pub struct CpuX86 {
    emu: Unicorn,
}

impl CpuX86 {
    /// Create an X86 emulator instance for the specified hardware mode.
    pub fn new(mode: Mode) -> Result<CpuX86, Error> {
        let emu = Unicorn::new(Arch::X86, mode);
        match emu {
            Ok(x) => Ok(CpuX86 { emu: x }),
            Err(x) => Err(x),
        }
    }
}

impl Cpu for CpuX86 {
    type Reg = RegisterX86;

    fn emu(&self) -> &Unicorn {
        &self.emu
    }
}


/// Internal : A Unicorn emulator instance, use one of the Cpu structs instead.
pub struct Unicorn {
    handle: libc::size_t, // Opaque handle to uc_engine
}

#[allow(non_camel_case_types)]
pub type uc_handle = libc::size_t;
#[allow(non_camel_case_types)]
pub type uc_hook = libc::size_t;

impl Error {
    pub fn msg(&self) -> String {
        error_msg(*self)
    }
}

/// Returns a tuple `(major, minor)` for the bindings version number.
pub fn bindings_version() -> (u32, u32) {
    (BINDINGS_MAJOR, BINDINGS_MINOR)
}

/// Returns a tuple `(major, minor)` for the unicorn version number.
pub fn unicorn_version() -> (u32, u32) {
    let mut major: u32 = 0;
    let mut minor: u32 = 0;
    let p_major: *mut u32 = &mut major;
    let p_minor: *mut u32 = &mut minor;
    unsafe {
        uc_version(p_major, p_minor);
    }
    (major, minor)
}

/// Returns `true` if the architecture is supported by this build of unicorn.
pub fn arch_supported(arch: Arch) -> bool {
    unsafe { uc_arch_supported(arch) }
}

/// Returns a string for the specified error code.
pub fn error_msg(error: Error) -> String {
    unsafe { CStr::from_ptr(uc_strerror(error)).to_string_lossy().into_owned() }
}

impl Unicorn {
    /// Create a new instance of the unicorn engine for the specified architecture
    /// and hardware mode.
    pub fn new(arch: Arch, mode: Mode) -> Result<Unicorn, Error> {
        // Verify bindings compatibility with the core before going further.
        let (major, minor) = unicorn_version();
        if major != BINDINGS_MAJOR || minor != BINDINGS_MINOR {
            return Err(Error::VERSION);
        }

        let mut handle: libc::size_t = 0;
        let err = unsafe { uc_open(arch, mode, &mut handle) };
        if err == Error::OK {
            Ok(Unicorn { handle: handle })
        } else {
            Err(err)
        }
    }

    /// Write an unsigned value register.
    ///
    /// Note : The register is defined as an i32 to be able to support the
    /// different register types (`RegisterX86`, `RegisterARM`, `RegisterMIPS` etc.).
    /// You need to cast the register with `as i32`.
    pub fn reg_write(&self, regid: i32, value: u64) -> Result<(), Error> {
        let p_value: *const u64 = &value;
        let err = unsafe { uc_reg_write(self.handle, regid, p_value as *const libc::c_void) };
        if err == Error::OK {
            Ok(())
        } else {
            Err(err)
        }
    }
    /// Write a signed 32-bit value to a register.
    ///
    /// Note : The register is defined as an i32 to be able to support the
    /// different register types (`RegisterX86`, `RegisterARM`, `RegisterMIPS` etc.).
    /// You need to cast the register with `as i32`.
    pub fn reg_write_i32(&self, regid: i32, value: i32) -> Result<(), Error> {
        let p_value: *const i32 = &value;
        let err = unsafe {
            uc_reg_write(self.handle,
                         regid as libc::c_int,
                         p_value as *const libc::c_void)
        };
        if err == Error::OK {
            Ok(())
        } else {
            Err(err)
        }
    }

    /// Read an unsigned value from a register.
    ///
    /// Note : The register is defined as an i32 to be able to support the
    /// different register types (`RegisterX86`, `RegisterARM`, `RegisterMIPS` etc.).
    /// You need to cast the register with `as i32`.
    pub fn reg_read(&self, regid: i32) -> Result<u64, Error> {
        let mut value: u64 = 0;
        let p_value: *mut u64 = &mut value;
        let err = unsafe {
            uc_reg_read(self.handle,
                        regid as libc::c_int,
                        p_value as *mut libc::c_void)
        };
        if err == Error::OK {
            Ok(value)
        } else {
            Err(err)
        }
    }

    /// Read a signed 32-bit value from a register.
    ///
    /// Note : The register is defined as an i32 to be able to support the
    /// different register types (`RegisterX86`, `RegisterARM`, `RegisterMIPS` etc.).
    /// You need to cast the register with `as i32`.
    pub fn reg_read_i32(&self, regid: i32) -> Result<i32, Error> {
        let mut value: i32 = 0;
        let p_value: *mut i32 = &mut value;
        let err = unsafe {
            uc_reg_read(self.handle,
                        regid as libc::c_int,
                        p_value as *mut libc::c_void)
        };
        if err == Error::OK {
            Ok(value)
        } else {
            Err(err)
        }
    }

    /// Map a memory region in the emulator at the specified address.
    ///
    /// `address` must be aligned to 4kb or this will return `Error::ARG`.
    /// `size` must be a multiple of 4kb or this will return `Error::ARG`.
    pub fn mem_map(&self,
                   address: u64,
                   size: libc::size_t,
                   perms: Protection)
                   -> Result<(), Error> {
        let err = unsafe { uc_mem_map(self.handle, address, size, perms.bits()) };
        if err == Error::OK {
            Ok(())
        } else {
            Err(err)
        }
    }

    /// Unmap a memory region.
    ///
    /// `address` must be aligned to 4kb or this will return `Error::ARG`.
    /// `size` must be a multiple of 4kb or this will return `Error::ARG`.
    pub fn mem_unmap(&self, address: u64, size: libc::size_t) -> Result<(), Error> {
        let err = unsafe { uc_mem_unmap(self.handle, address, size) };
        if err == Error::OK {
            Ok(())
        } else {
            Err(err)
        }
    }

    /// Write a range of bytes to memory at the specified address.
    pub fn mem_write(&self, address: u64, bytes: &[u8]) -> Result<(), Error> {
        let err = unsafe {
            uc_mem_write(self.handle,
                         address,
                         bytes.as_ptr(),
                         bytes.len() as libc::size_t)
        };
        if err == Error::OK {
            Ok(())
        } else {
            Err(err)
        }
    }

    /// Read a range of bytes from memory at the specified address.
    pub fn mem_read(&self, address: u64, size: usize) -> Result<(Vec<u8>), Error> {
        let mut bytes: Vec<u8> = Vec::with_capacity(size);
        let err = unsafe {
            uc_mem_read(self.handle,
                        address,
                        bytes.as_mut_ptr(),
                        size as libc::size_t)
        };
        if err == Error::OK {
            unsafe {
                bytes.set_len(size);
            }
            Ok((bytes))
        } else {
            Err(err)
        }
    }

    /// Set the memory permissions for an existing memory region.
    ///
    /// `address` must be aligned to 4kb or this will return `Error::ARG`.
    /// `size` must be a multiple of 4kb or this will return `Error::ARG`.
    pub fn mem_protect(&self, address: u64, size: usize, perms: Protection) -> Result<(), Error> {
        let err = unsafe {
            uc_mem_protect(self.handle, address, size as libc::size_t, perms.bits())
        };
        if err == Error::OK {
            Ok(())
        } else {
            Err(err)
        }
    }

    /// Returns a vector with the memory regions that are mapped in the emulator.
    pub fn mem_regions(&self) -> Result<Vec<MemRegion>, Error> {
        // We make a copy of the MemRegion structs that are returned by uc_mem_regions()
        // as they have to be freed to the caller. It is simpler to make a copy and free()
        // the originals right away.
        let mut nb_regions: u32 = 0;
        let p_nb_regions: *mut u32 = &mut nb_regions;
        let p_regions: *const MemRegion = std::ptr::null();
        let pp_regions: *const *const MemRegion = &p_regions;
        let err = unsafe { uc_mem_regions(self.handle, pp_regions, p_nb_regions) };
        if err == Error::OK {
            let mut regions: Vec<MemRegion> = Vec::new();
            let mut i: isize = 0;
            while i < nb_regions as isize {
                unsafe {
                    let region: MemRegion = mem::transmute_copy(&*p_regions.offset(i));
                    regions.push(region);
                }
                i += 1;
            }
            unsafe { libc::free(*pp_regions as *mut libc::c_void) };
            Ok(regions)
        } else {
            Err(err)
        }
    }

    /// Emulate machine code for a specified duration.
    ///
    /// `begin` is the address where to start the emulation. The emulation stops if `until`
    /// is hit. `timeout` specifies a duration in microseconds after which the emulation is
    /// stopped (infinite execution if set to 0). `count` is the maximum number of instructions
    /// to emulate (emulate all the available instructions if set to 0).
    pub fn emu_start(&self,
                     begin: u64,
                     until: u64,
                     timeout: u64,
                     count: usize)
                     -> Result<(), Error> {
        let err = unsafe {
            uc_emu_start(self.handle, begin, until, timeout, count as libc::size_t)
        };
        if err == Error::OK {
            Ok(())
        } else {
            Err(err)
        }
    }

    /// Stop the emulation.
    ///
    /// This is usually called from callback function in hooks.
    /// NOTE: For now, this will stop the execution only after the current block.
    pub fn emu_stop(&self) -> Result<(), Error> {
        let err = unsafe { uc_emu_stop(self.handle) };
        if err == Error::OK {
            Ok(())
        } else {
            Err(err)
        }
    }

    /// Add a code hook.
    pub fn add_code_hook(&self,
                         hook_type: HookType,
                         begin: u64,
                         end: u64,
                         callback: extern "C" fn(engine: uc_handle,
                                                 address: u64,
                                                 size: u32,
                                                 user_data: *mut u64)
                                                )
                         -> Result<uc_hook, Error> {
        let mut hook: libc::size_t = 0;
        let mut user_data: libc::size_t = 0;
        let p_hook: *mut libc::size_t = &mut hook;
        let p_user_data: *mut libc::size_t = &mut user_data;
        let err = unsafe {
            let _callback: libc::size_t = mem::transmute(callback);
            uc_hook_add(self.handle,
                        p_hook,
                        hook_type,
                        _callback,
                        p_user_data,
                        begin,
                        end)
        };
        if err == Error::OK {
            Ok(hook)
        } else {
            Err(err)
        }
    }

    /// Add a memory hook. 
    pub fn add_mem_hook(&self,
                        hook_type: HookType,
                        begin: u64,
                        end: u64,
                        callback: extern "C" fn(engine: uc_handle,
                                                mem_type: MemType,
                                                address: u64,
                                                size: i32,
                                                value: i64,
                                                user_data: *mut u64)
                                               )
                        -> Result<uc_hook, Error> {
        let mut hook: libc::size_t = 0;
        let mut user_data: libc::size_t = 0;
        let p_hook: *mut libc::size_t = &mut hook;
        let p_user_data: *mut libc::size_t = &mut user_data;
        let err = unsafe {
            let _callback: libc::size_t = mem::transmute(callback);
            uc_hook_add(self.handle,
                        p_hook,
                        hook_type,
                        _callback,
                        p_user_data,
                        begin,
                        end)
        };
        if err == Error::OK {
            Ok(hook)
        } else {
            Err(err)
        }
    }

    /// Remove a hook.
    ///
    /// `hook` is the value returned by either `add_code_hook` or `add_mem_hook`.
    pub fn remove_hook(&self, hook: uc_hook) -> Result<(), Error> {
        let err = unsafe { uc_hook_del(self.handle, hook) } as Error;
        if err == Error::OK {
            Ok(())
        } else {
            Err(err)
        }

    }

    /// Return the last error code when an API function failed.
    ///
    /// Like glibc errno(), this function might not retain its old value once accessed.
    pub fn errno(&self) -> Error {
        unsafe { uc_errno(self.handle) }
    }

    /// Query the internal status of the engine.
    ///
    /// Supported queries :
    ///
    /// - `Query::PAGE_SIZE` : the page size used by the emulator.
    /// - `Query::MODE` : the current hardware mode.
    pub fn query(&self, query: Query) -> Result<usize, Error> {
        let mut result: libc::size_t = 0;
        let p_result: *mut libc::size_t = &mut result;
        let err = unsafe { uc_query(self.handle, query, p_result) };
        if err == Error::OK {
            Ok(result)
        } else {
            Err(err)
        }
    }
}

impl Drop for Unicorn {
    fn drop(&mut self) {
        unsafe { uc_close(self.handle) };
    }
}