1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
// This file contains code from external sources.
// Attributions: https://github.com/wasmerio/wasmer/blob/master/ATTRIBUTIONS.md
//! Memory management for executable code.
use rustix::mm::{self, MapFlags, MprotectFlags, ProtFlags};
use std::sync::Arc;
use unc_vm_compiler::CompileError;
/// The optimal alignment for functions.
///
/// On x86-64, this is 16 since it's what the optimizations assume.
/// When we add support for other architectures, we should also figure out their
/// optimal alignment values.
pub(crate) const ARCH_FUNCTION_ALIGNMENT: u16 = 16;
/// The optimal alignment for data.
///
pub(crate) const DATA_SECTION_ALIGNMENT: u16 = 64;
fn round_up(size: usize, multiple: usize) -> usize {
debug_assert!(multiple.is_power_of_two());
(size + (multiple - 1)) & !(multiple - 1)
}
pub struct CodeMemoryWriter<'a> {
memory: &'a mut CodeMemory,
offset: usize,
}
impl<'a> CodeMemoryWriter<'a> {
/// Write the contents from the provided buffer into the location of `self.memory` aligned to
/// provided `alignment`.
///
/// The `alignment` actually used may be greater than the spepcified value. This is relevant,
/// for example, when calling this function after a sequence of [`Self::write_executable`]
/// calls.
///
/// Returns the position within the mapping at which the buffer was written.
pub fn write_data(&mut self, mut alignment: u16, input: &[u8]) -> Result<usize, CompileError> {
if self.offset == self.memory.executable_end {
alignment = u16::try_from(rustix::param::page_size()).expect("page size > u16::MAX");
}
self.write_inner(alignment, input)
}
/// Write the executable code from the provided buffer into the executable portion of
/// `self.memory`.
///
/// All executable parts must be written out before `self.write_data` is called for the first
/// time.
///
/// Returns the position within the mapping at which the buffer was written.
pub fn write_executable(
&mut self,
alignment: u16,
input: &[u8],
) -> Result<usize, CompileError> {
assert_eq!(
self.memory.executable_end, self.offset,
"may not interleave executable and data in the same map"
);
let result = self.write_inner(alignment, input);
self.memory.executable_end = self.offset;
result
}
fn write_inner(&mut self, alignment: u16, input: &[u8]) -> Result<usize, CompileError> {
let entry_offset = self.offset;
let aligned_offset = round_up(entry_offset, usize::from(alignment));
let final_offset = aligned_offset + input.len();
let out_buffer = self.memory.as_slice_mut();
// Fill out the padding with zeroes, if only to make sure there are no gadgets in there.
out_buffer
.get_mut(entry_offset..aligned_offset)
.ok_or_else(|| CompileError::Resource("out of code memory space".into()))?
.fill(0);
out_buffer
.get_mut(aligned_offset..final_offset)
.ok_or_else(|| CompileError::Resource("out of code memory space".into()))?
.copy_from_slice(input);
self.offset = final_offset;
Ok(aligned_offset)
}
/// The current position of the writer.
pub fn position(&self) -> usize {
self.offset
}
}
/// Mappings to regions of memory storing the executable JIT code.
pub struct CodeMemory {
/// Where to return this memory to when dropped.
source_pool: Option<Arc<crossbeam_queue::ArrayQueue<Self>>>,
/// The mapping
map: *mut u8,
/// Mapping size
size: usize,
/// Addresses `0..executable_end` contain executable memory.
///
/// In a populated buffer rounding this up to the next page will give the address of the
/// read-write data portion of this memory.
executable_end: usize,
}
impl CodeMemory {
fn create(size: usize) -> rustix::io::Result<Self> {
// Make sure callers don’t pass in a 0-sized map request. That is most likely a bug.
assert!(size != 0);
let size = round_up(size, rustix::param::page_size());
let map = unsafe {
mm::mmap_anonymous(
std::ptr::null_mut(),
size,
ProtFlags::WRITE | ProtFlags::READ,
MapFlags::SHARED,
)?
};
Ok(Self { source_pool: None, map: map.cast(), executable_end: 0, size })
}
fn as_slice_mut(&mut self) -> &mut [u8] {
unsafe {
// SAFETY: We have made sure that this is the only reference to the memory region by
// requiring a mutable self reference.
std::slice::from_raw_parts_mut(self.map, self.size)
}
}
/// Ensure this CodeMemory is at least of the requested size.
///
/// This will invalidate any data previously written into the mapping if the mapping needs to
/// be resized.
pub fn resize(mut self, size: usize) -> rustix::io::Result<Self> {
if self.size < size {
// Ideally we would use mremap, but see
// https://bugzilla.kernel.org/show_bug.cgi?id=8691
let source_pool = unsafe {
mm::munmap(self.map.cast(), self.size)?;
let source_pool = self.source_pool.take();
std::mem::forget(self);
source_pool
};
Self::create(size).map(|mut m| {
m.source_pool = source_pool;
m
})
} else {
self.executable_end = 0;
Ok(self)
}
}
/// Write to this code memory from the beginning of the mapping.
///
/// # Safety
///
/// At the time this method is called, there should remain no dangling readable/executable
/// references to this `CodeMemory`, for the original code memory that those references point
/// to are invalidated as soon as this method is invoked.
pub unsafe fn writer(&mut self) -> CodeMemoryWriter<'_> {
self.executable_end = 0;
CodeMemoryWriter { memory: self, offset: 0 }
}
/// Publish the specified number of bytes as executable code.
///
/// # Safety
///
/// Calling this requires that no mutable references to the code memory remain.
pub unsafe fn publish(&mut self) -> Result<(), CompileError> {
mm::mprotect(
self.map.cast(),
self.executable_end,
MprotectFlags::EXEC | MprotectFlags::READ,
)
.map_err(|e| {
CompileError::Resource(format!("could not make code memory executable: {}", e))
})
}
/// Remap the offset into an absolute address within a read-execute mapping.
///
/// Offset must not exceed `isize::MAX`.
pub unsafe fn executable_address(&self, offset: usize) -> *const u8 {
// TODO: encapsulate offsets so that this `offset` is guaranteed to be sound.
debug_assert!(offset <= isize::MAX as usize);
self.map.offset(offset as isize)
}
/// Remap the offset into an absolute address within a read-write mapping.
///
/// Offset must not exceed `isize::MAX`.
pub unsafe fn writable_address(&self, offset: usize) -> *mut u8 {
// TODO: encapsulate offsets so that this `offset` is guaranteed to be sound.
debug_assert!(offset <= isize::MAX as usize);
self.map.offset(offset as isize)
}
}
impl Drop for CodeMemory {
fn drop(&mut self) {
if let Some(source_pool) = self.source_pool.take() {
unsafe {
let result = mm::mprotect(
self.map.cast(),
self.size,
MprotectFlags::WRITE | MprotectFlags::READ,
);
if let Err(e) = result {
panic!(
"could not mprotect mapping before returning it to the memory pool: \
map={:?}, size={:?}, error={}",
self.map, self.size, e
);
}
}
drop(source_pool.push(Self {
source_pool: None,
map: self.map,
size: self.size,
executable_end: 0,
}));
} else {
unsafe {
if let Err(e) = mm::munmap(self.map.cast(), self.size) {
tracing::error!(
target: "unc_vm",
message="could not unmap mapping",
map=?self.map, size=self.size, error=%e
);
}
}
}
}
}
unsafe impl Send for CodeMemory {}
/// The pool of preallocated memory maps for storing the code.
///
/// This pool cannot grow and will only allow up to a number of code mappings that were specified
/// at construction time.
///
/// However it is possible for the mappings inside to grow to accomodate larger code.
#[derive(Clone)]
pub struct LimitedMemoryPool {
pool: Arc<crossbeam_queue::ArrayQueue<CodeMemory>>,
}
impl LimitedMemoryPool {
/// Create a new pool with `count` mappings initialized to `default_memory_size` each.
pub fn new(count: usize, default_memory_size: usize) -> rustix::io::Result<Self> {
let pool = Arc::new(crossbeam_queue::ArrayQueue::new(count));
let this = Self { pool };
for _ in 0..count {
this.pool
.push(CodeMemory::create(default_memory_size)?)
.unwrap_or_else(|_| panic!("ArrayQueue could not accomodate {count} memories!"));
}
Ok(this)
}
/// Get a memory mapping, at least `size` bytes large.
pub fn get(&self, size: usize) -> rustix::io::Result<CodeMemory> {
let mut memory = self.pool.pop().ok_or(rustix::io::Errno::NOMEM)?;
memory.source_pool = Some(Arc::clone(&self.pool));
if memory.size < size {
Ok(memory.resize(size)?)
} else {
Ok(memory)
}
}
}
#[cfg(test)]
mod tests {
use super::CodeMemory;
fn _assert() {
fn _assert_send<T: Send>() {}
_assert_send::<CodeMemory>();
}
}