1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
use crate::hash::CryptoHash;
use crate::types::MerkleHash;
use borsh::{BorshDeserialize, BorshSerialize};

#[derive(
    Debug,
    Clone,
    PartialEq,
    Eq,
    BorshSerialize,
    BorshDeserialize,
    serde::Serialize,
    serde::Deserialize,
)]
pub struct MerklePathItem {
    pub hash: MerkleHash,
    pub direction: Direction,
}

pub type MerklePath = Vec<MerklePathItem>;

#[derive(
    Debug,
    Clone,
    PartialEq,
    Eq,
    BorshSerialize,
    BorshDeserialize,
    serde::Serialize,
    serde::Deserialize,
)]
pub enum Direction {
    Left,
    Right,
}

pub fn combine_hash(hash1: &MerkleHash, hash2: &MerkleHash) -> MerkleHash {
    CryptoHash::hash_borsh((hash1, hash2))
}

/// Merklize an array of items. If the array is empty, returns hash of 0
pub fn merklize<T: BorshSerialize>(arr: &[T]) -> (MerkleHash, Vec<MerklePath>) {
    if arr.is_empty() {
        return (MerkleHash::default(), vec![]);
    }
    let mut len = arr.len().next_power_of_two();
    let mut hashes = arr.iter().map(CryptoHash::hash_borsh).collect::<Vec<_>>();

    // degenerate case
    if len == 1 {
        return (hashes[0], vec![vec![]]);
    }
    let mut arr_len = arr.len();
    let mut paths: Vec<MerklePath> = (0..arr_len)
        .map(|i| {
            if i % 2 == 0 {
                if i + 1 < arr_len {
                    vec![MerklePathItem {
                        hash: hashes[(i + 1) as usize],
                        direction: Direction::Right,
                    }]
                } else {
                    vec![]
                }
            } else {
                vec![MerklePathItem { hash: hashes[(i - 1) as usize], direction: Direction::Left }]
            }
        })
        .collect();

    let mut counter = 1;
    while len > 1 {
        len /= 2;
        counter *= 2;
        for i in 0..len {
            let hash = if 2 * i >= arr_len {
                continue;
            } else if 2 * i + 1 >= arr_len {
                hashes[2 * i]
            } else {
                combine_hash(&hashes[2 * i], &hashes[2 * i + 1])
            };
            hashes[i] = hash;
            if len > 1 {
                if i % 2 == 0 {
                    for j in 0..counter {
                        let index = ((i + 1) * counter + j) as usize;
                        if index < arr.len() {
                            paths[index].push(MerklePathItem { hash, direction: Direction::Left });
                        }
                    }
                } else {
                    for j in 0..counter {
                        let index = ((i - 1) * counter + j) as usize;
                        if index < arr.len() {
                            paths[index].push(MerklePathItem { hash, direction: Direction::Right });
                        }
                    }
                }
            }
        }
        arr_len = (arr_len + 1) / 2;
    }
    (hashes[0], paths)
}

/// Verify merkle path for given item and corresponding path.
pub fn verify_path<T: BorshSerialize>(root: MerkleHash, path: &MerklePath, item: T) -> bool {
    verify_hash(root, path, CryptoHash::hash_borsh(item))
}

pub fn verify_hash(root: MerkleHash, path: &MerklePath, item_hash: MerkleHash) -> bool {
    compute_root_from_path(path, item_hash) == root
}

pub fn compute_root_from_path(path: &MerklePath, item_hash: MerkleHash) -> MerkleHash {
    let mut res = item_hash;
    for item in path {
        match item.direction {
            Direction::Left => {
                res = combine_hash(&item.hash, &res);
            }
            Direction::Right => {
                res = combine_hash(&res, &item.hash);
            }
        }
    }
    res
}

pub fn compute_root_from_path_and_item<T: BorshSerialize>(
    path: &MerklePath,
    item: T,
) -> MerkleHash {
    compute_root_from_path(path, CryptoHash::hash_borsh(item))
}

/// Merkle tree that only maintains the path for the next leaf, i.e,
/// when a new leaf is inserted, the existing `path` is its proof.
/// The root can be computed by folding `path` from right but is not explicitly
/// maintained to save space.
/// The size of the object is O(log(n)) where n is the number of leaves in the tree, i.e, `size`.
#[derive(
    Default, Clone, BorshSerialize, BorshDeserialize, Eq, PartialEq, Debug, serde::Serialize,
)]
pub struct PartialMerkleTree {
    /// Path for the next leaf.
    path: Vec<MerkleHash>,
    /// Number of leaves in the tree.
    size: u64,
}

impl PartialMerkleTree {
    pub fn root(&self) -> MerkleHash {
        if self.path.is_empty() {
            CryptoHash::default()
        } else {
            let mut res = *self.path.last().unwrap();
            let len = self.path.len();
            for i in (0..len - 1).rev() {
                res = combine_hash(&self.path[i], &res);
            }
            res
        }
    }

    pub fn insert(&mut self, elem: MerkleHash) {
        let mut s = self.size;
        let mut node = elem;
        while s % 2 == 1 {
            let last_path_elem = self.path.pop().unwrap();
            node = combine_hash(&last_path_elem, &node);
            s /= 2;
        }
        self.path.push(node);
        self.size += 1;
    }

    pub fn size(&self) -> u64 {
        self.size
    }

    pub fn get_path(&self) -> &[MerkleHash] {
        &self.path
    }
}

#[cfg(test)]
mod tests {
    use rand::rngs::StdRng;
    use rand::{Rng, SeedableRng};

    use super::*;

    fn test_with_len(n: u32, rng: &mut StdRng) {
        let mut arr: Vec<u32> = vec![];
        for _ in 0..n {
            arr.push(rng.gen_range(0..1000));
        }
        let (root, paths) = merklize(&arr);
        assert_eq!(paths.len() as u32, n);
        for (i, item) in arr.iter().enumerate() {
            assert!(verify_path(root, &paths[i], item));
        }
    }

    #[test]
    fn test_merkle_path() {
        let mut rng: StdRng = SeedableRng::seed_from_u64(1);
        for _ in 0..10 {
            let len: u32 = rng.gen_range(1..100);
            test_with_len(len, &mut rng);
        }
    }

    #[test]
    fn test_incorrect_path() {
        let items = vec![111, 222, 333];
        let (root, paths) = merklize(&items);
        for i in 0..items.len() {
            assert!(!verify_path(root, &paths[(i + 1) % 3], &items[i]))
        }
    }

    #[test]
    fn test_elements_order() {
        let items = vec![1, 2];
        let (root, _) = merklize(&items);
        let items2 = vec![2, 1];
        let (root2, _) = merklize(&items2);
        assert_ne!(root, root2);
    }

    /// Compute the merkle root of a given array.
    fn compute_root(hashes: &[CryptoHash]) -> CryptoHash {
        if hashes.is_empty() {
            CryptoHash::default()
        } else if hashes.len() == 1 {
            hashes[0]
        } else {
            let len = hashes.len();
            let subtree_len = len.next_power_of_two() / 2;
            let left_root = compute_root(&hashes[0..subtree_len]);
            let right_root = compute_root(&hashes[subtree_len..len]);
            combine_hash(&left_root, &right_root)
        }
    }

    #[test]
    fn test_merkle_tree() {
        let mut tree = PartialMerkleTree::default();
        let mut hashes = vec![];
        for i in 0..50 {
            assert_eq!(compute_root(&hashes), tree.root());
            let cur_hash = CryptoHash::hash_bytes(&[i]);
            hashes.push(cur_hash);
            tree.insert(cur_hash);
        }
    }

    #[test]
    fn test_combine_hash_stability() {
        let a = MerkleHash::default();
        let b = MerkleHash::default();
        let cc = combine_hash(&a, &b);
        assert_eq!(
            cc.0,
            [
                245, 165, 253, 66, 209, 106, 32, 48, 39, 152, 239, 110, 211, 9, 151, 155, 67, 0,
                61, 35, 32, 217, 240, 232, 234, 152, 49, 169, 39, 89, 251, 75
            ]
        );
    }
}