1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
use borsh::{BorshDeserialize, BorshSerialize};
use ed25519_dalek::ed25519::signature::{Signer, Verifier};
use once_cell::sync::Lazy;
use primitive_types::U256;
use secp256k1::rand::rngs::OsRng;
use secp256k1::Message;
use std::convert::AsRef;
use std::fmt::{Debug, Display, Formatter};
use std::hash::{Hash, Hasher};
use std::io::{Error, ErrorKind, Read, Write};
use std::str::FromStr;
use rsa::Pkcs1v15Sign;
use rsa::pkcs8::{EncodePrivateKey, EncodePublicKey, DecodePublicKey, DecodePrivateKey};

pub static SECP256K1: Lazy<secp256k1::Secp256k1<secp256k1::All>> =
    Lazy::new(secp256k1::Secp256k1::new);

#[derive(Debug, Copy, Clone, serde::Serialize, serde::Deserialize)]
#[cfg_attr(test, derive(bolero::TypeGenerator))]
pub enum KeyType {
    ED25519 = 0,
    SECP256K1 = 1,
    RSA2048 = 2,
}

impl Display for KeyType {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        f.write_str(match self {
            KeyType::ED25519 => "ed25519",
            KeyType::SECP256K1 => "secp256k1",
            KeyType::RSA2048 => "rsa2048",
        })
    }
}

impl FromStr for KeyType {
    type Err = crate::errors::ParseKeyTypeError;

    fn from_str(value: &str) -> Result<Self, Self::Err> {
        let lowercase_key_type = value.to_ascii_lowercase();
        match lowercase_key_type.as_str() {
            "ed25519" => Ok(KeyType::ED25519),
            "secp256k1" => Ok(KeyType::SECP256K1),
            "rsa2048" => Ok(KeyType::RSA2048),
            _ => Err(Self::Err::UnknownKeyType { unknown_key_type: lowercase_key_type }),
        }
    }
}

impl TryFrom<u8> for KeyType {
    type Error = crate::errors::ParseKeyTypeError;

    fn try_from(value: u8) -> Result<Self, Self::Error> {
        match value {
            0_u8 => Ok(KeyType::ED25519),
            1_u8 => Ok(KeyType::SECP256K1),
            2_u8 => Ok(KeyType::RSA2048),
            unknown_key_type => {
                Err(Self::Error::UnknownKeyType { unknown_key_type: unknown_key_type.to_string() })
            }
        }
    }
}

fn split_key_type_data(value: &str) -> Result<(KeyType, &str), crate::errors::ParseKeyTypeError> {
    if let Some((prefix, key_data)) = value.split_once(':') {
        Ok((KeyType::from_str(prefix)?, key_data))
    } else {
        // If there is no prefix then we Default to ED25519.
        Ok((KeyType::ED25519, value))
    }
}

// RSA
const RAW_PUBLIC_KEY_RSA_2048_LENGTH: usize = 294;
#[derive(Clone, Eq, Ord, PartialEq, PartialOrd, derive_more::AsRef, derive_more::From)]
#[cfg_attr(test, derive(bolero::TypeGenerator))]
#[as_ref(forward)]
pub struct Rsa2048PublicKey([u8; RAW_PUBLIC_KEY_RSA_2048_LENGTH]);

impl TryFrom<&[u8]> for crate::Rsa2048PublicKey {
    type Error = crate::errors::ParseKeyError;

    fn try_from(data: &[u8]) -> Result<Self, Self::Error> {
        data.try_into().map(Self).map_err(|_| Self::Error::InvalidLength {
            expected_length: RAW_PUBLIC_KEY_RSA_2048_LENGTH,
            received_length: data.len(),
        })
    }
}

impl std::fmt::Debug for crate::Rsa2048PublicKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
        Display::fmt(&Bs58(&self.0), f)
    }
}

// SECP256K1
const PUBLIC_KEY_SECP256K1_LENGTH: usize = 64;

#[derive(Clone, Eq, Ord, PartialEq, PartialOrd, derive_more::AsRef, derive_more::From)]
#[cfg_attr(test, derive(bolero::TypeGenerator))]
#[as_ref(forward)]
pub struct Secp256K1PublicKey([u8; PUBLIC_KEY_SECP256K1_LENGTH]);

impl TryFrom<&[u8]> for Secp256K1PublicKey {
    type Error = crate::errors::ParseKeyError;

    fn try_from(data: &[u8]) -> Result<Self, Self::Error> {
        data.try_into().map(Self).map_err(|_| Self::Error::InvalidLength {
            expected_length: PUBLIC_KEY_SECP256K1_LENGTH,
            received_length: data.len(),
        })
    }
}

impl std::fmt::Debug for Secp256K1PublicKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
        Display::fmt(&Bs58(&self.0), f)
    }
}

#[derive(Clone, Eq, Ord, PartialEq, PartialOrd, derive_more::AsRef, derive_more::From)]
#[cfg_attr(test, derive(bolero::TypeGenerator))]
#[as_ref(forward)]
pub struct ED25519PublicKey(pub [u8; ed25519_dalek::PUBLIC_KEY_LENGTH]);

impl TryFrom<&[u8]> for ED25519PublicKey {
    type Error = crate::errors::ParseKeyError;

    fn try_from(data: &[u8]) -> Result<Self, Self::Error> {
        data.try_into().map(Self).map_err(|_| Self::Error::InvalidLength {
            expected_length: ed25519_dalek::PUBLIC_KEY_LENGTH,
            received_length: data.len(),
        })
    }
}

impl std::fmt::Debug for ED25519PublicKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
        Display::fmt(&Bs58(&self.0), f)
    }
}

/// Public key container supporting different curves.
#[derive(Clone, PartialEq, PartialOrd, Ord, Eq)]
#[cfg_attr(test, derive(bolero::TypeGenerator))]
pub enum PublicKey {
    /// 256 bit elliptic curve based public-key.
    ED25519(ED25519PublicKey),
    /// 512 bit elliptic curve based public-key used in Bitcoin's public-key cryptography.
    SECP256K1(Secp256K1PublicKey),
    /// 2048 bit rsa
    RSA(Rsa2048PublicKey),
}

impl PublicKey {
    // `is_empty` always returns false, so there is no point in adding it
    #[allow(clippy::len_without_is_empty)]
    pub fn len(&self) -> usize {
        const ED25519_LEN: usize = ed25519_dalek::PUBLIC_KEY_LENGTH + 1;
        match self {
            Self::ED25519(_) => ED25519_LEN,
            Self::SECP256K1(_) => PUBLIC_KEY_SECP256K1_LENGTH + 1,
            Self::RSA(_) => RAW_PUBLIC_KEY_RSA_2048_LENGTH + 1,
        }
    }

    pub fn empty(key_type: KeyType) -> Self {
        match key_type {
            KeyType::ED25519 => {
                PublicKey::ED25519(ED25519PublicKey([0u8; ed25519_dalek::PUBLIC_KEY_LENGTH]))
            }
            KeyType::SECP256K1 => PublicKey::SECP256K1(Secp256K1PublicKey([0u8; PUBLIC_KEY_SECP256K1_LENGTH])),
            KeyType::RSA2048 => PublicKey::RSA(Rsa2048PublicKey([0u8; RAW_PUBLIC_KEY_RSA_2048_LENGTH])),
        }
    }

    pub fn key_type(&self) -> KeyType {
        match self {
            Self::ED25519(_) => KeyType::ED25519,
            Self::SECP256K1(_) => KeyType::SECP256K1,
            Self::RSA(_) => KeyType::RSA2048,
        }
    }

    pub fn key_data(&self) -> &[u8] {
        match self {
            Self::ED25519(key) => key.as_ref(),
            Self::SECP256K1(key) => key.as_ref(),
            Self::RSA(key) => key.as_ref(),
        }
    }

    pub fn unwrap_as_ed25519(&self) -> &ED25519PublicKey {
        match self {
            Self::ED25519(key) => key,
            _ => panic!(),
        }
    }

    pub fn unwrap_as_secp256k1(&self) -> &Secp256K1PublicKey {
        match self {
            Self::SECP256K1(key) => key,
            _ => panic!(),
        }
    }

    pub fn unwrap_as_rsa2048(&self) -> &Rsa2048PublicKey {
        match self {
            Self::RSA(key) => key,
            _ => panic!(),
        }
    }
}

// This `Hash` implementation is safe since it retains the property
// `k1 == k2 ⇒ hash(k1) == hash(k2)`.
impl Hash for PublicKey {
    fn hash<H: Hasher>(&self, state: &mut H) {
        match self {
            PublicKey::ED25519(public_key) => {
                state.write_u8(0u8);
                state.write(&public_key.0);
            }
            PublicKey::SECP256K1(public_key) => {
                state.write_u8(1u8);
                state.write(&public_key.0);
            }
            PublicKey::RSA(public_key) => {
                state.write_u8(2u8);
                state.write(&public_key.0);
            }
        }
    }
}

impl Display for PublicKey {
    fn fmt(&self, fmt: &mut Formatter) -> std::fmt::Result {
        let (key_type, key_data) = match self {
            PublicKey::ED25519(public_key) => (KeyType::ED25519, &public_key.0[..]),
            PublicKey::SECP256K1(public_key) => (KeyType::SECP256K1, &public_key.0[..]),
            PublicKey::RSA(public_key) => (KeyType::RSA2048, &public_key.0[..]),
        };
        write!(fmt, "{}:{}", key_type, Bs58(key_data))
    }
}

impl Debug for PublicKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
        Display::fmt(self, f)
    }
}

impl BorshSerialize for PublicKey {
    fn serialize<W: Write>(&self, writer: &mut W) -> Result<(), Error> {
        match self {
            PublicKey::ED25519(public_key) => {
                BorshSerialize::serialize(&0u8, writer)?;
                writer.write_all(&public_key.0)?;
            }
            PublicKey::SECP256K1(public_key) => {
                BorshSerialize::serialize(&1u8, writer)?;
                writer.write_all(&public_key.0)?;
            }
            PublicKey::RSA(public_key) => {
                BorshSerialize::serialize(&2u8, writer)?;
                writer.write_all(&public_key.0)?;
            }
        }
        Ok(())
    }
}

impl BorshDeserialize for PublicKey {
    fn deserialize_reader<R: Read>(rd: &mut R) -> std::io::Result<Self> {
        let key_type = KeyType::try_from(u8::deserialize_reader(rd)?)
            .map_err(|err| Error::new(ErrorKind::InvalidData, err.to_string()))?;
        match key_type {
            KeyType::ED25519 => {
                Ok(PublicKey::ED25519(ED25519PublicKey(BorshDeserialize::deserialize_reader(rd)?)))
            }
            KeyType::SECP256K1 => Ok(PublicKey::SECP256K1(Secp256K1PublicKey(
                BorshDeserialize::deserialize_reader(rd)?,
            ))),
            KeyType::RSA2048 => Ok(PublicKey::RSA(Rsa2048PublicKey(
                BorshDeserialize::deserialize_reader(rd)?,
            ))),
        }
    }
}

impl serde::Serialize for PublicKey {
    fn serialize<S>(
        &self,
        serializer: S,
    ) -> Result<<S as serde::Serializer>::Ok, <S as serde::Serializer>::Error>
    where
        S: serde::Serializer,
    {
        serializer.collect_str(self)
    }
}

impl<'de> serde::Deserialize<'de> for PublicKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, <D as serde::Deserializer<'de>>::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let s = <String as serde::Deserialize>::deserialize(deserializer)?;
        s.parse()
            .map_err(|err: crate::errors::ParseKeyError| serde::de::Error::custom(err.to_string()))
    }
}

impl FromStr for PublicKey {
    type Err = crate::errors::ParseKeyError;

    fn from_str(value: &str) -> Result<Self, Self::Err> {
        let (key_type, key_data) = split_key_type_data(value)?;
        Ok(match key_type {
            KeyType::ED25519 => Self::ED25519(ED25519PublicKey(decode_bs58(key_data)?)),
            KeyType::SECP256K1 => Self::SECP256K1(Secp256K1PublicKey(decode_bs58(key_data)?)),
            KeyType::RSA2048 => Self::RSA(Rsa2048PublicKey(decode_bs58(key_data)?)),
        })
    }
}

impl From<ED25519PublicKey> for PublicKey {
    fn from(ed25519: ED25519PublicKey) -> Self {
        Self::ED25519(ed25519)
    }
}

impl From<Secp256K1PublicKey> for PublicKey {
    fn from(secp256k1: Secp256K1PublicKey) -> Self {
        Self::SECP256K1(secp256k1)
    }
}

impl From<Rsa2048PublicKey> for PublicKey {
    fn from(rsa2048: Rsa2048PublicKey) -> Self {
        Self::RSA(rsa2048)
    }
}

#[derive(Clone, Eq)]
// This is actually a keypair, because ed25519_dalek api only has keypair.sign
// From ed25519_dalek doc: The first SECRET_KEY_LENGTH of bytes is the SecretKey
// The last PUBLIC_KEY_LENGTH of bytes is the public key, in total it's KEYPAIR_LENGTH
pub struct ED25519SecretKey(pub [u8; ed25519_dalek::KEYPAIR_LENGTH]);

impl PartialEq for ED25519SecretKey {
    fn eq(&self, other: &Self) -> bool {
        self.0[..ed25519_dalek::SECRET_KEY_LENGTH] == other.0[..ed25519_dalek::SECRET_KEY_LENGTH]
    }
}

impl std::fmt::Debug for ED25519SecretKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
        Display::fmt(&Bs58(&self.0[..ed25519_dalek::SECRET_KEY_LENGTH]), f)
    }
}


pub(crate) const PRIVTAE_KEY_DEFAULT_RSA_KEY_BITS: usize = 2048;

/// Secret key container supporting different curves.
#[derive(Clone, Eq, PartialEq, Debug)]
pub enum SecretKey {
    ED25519(ED25519SecretKey),
    SECP256K1(secp256k1::SecretKey),
    RSA(rsa::RsaPrivateKey),
}

impl SecretKey {
    pub fn key_type(&self) -> KeyType {
        match self {
            SecretKey::ED25519(_) => KeyType::ED25519,
            SecretKey::SECP256K1(_) => KeyType::SECP256K1,
            SecretKey::RSA(_) => KeyType::RSA2048,
        }
    }

    pub fn from_random(key_type: KeyType) -> SecretKey {
        match key_type {
            KeyType::ED25519 => {
                let keypair = ed25519_dalek::SigningKey::generate(&mut OsRng);
                SecretKey::ED25519(ED25519SecretKey(keypair.to_keypair_bytes()))
            }
            KeyType::SECP256K1 => SecretKey::SECP256K1(secp256k1::SecretKey::new(&mut OsRng)),
            KeyType::RSA2048 => {
                SecretKey::RSA(rsa::RsaPrivateKey::new(&mut OsRng, PRIVTAE_KEY_DEFAULT_RSA_KEY_BITS).unwrap())
            }
        }
    }

    pub fn sign(&self, data: &[u8]) -> Signature {
        match &self {
            SecretKey::ED25519(secret_key) => {
                let keypair = ed25519_dalek::SigningKey::from_keypair_bytes(&secret_key.0).unwrap();
                Signature::ED25519(keypair.sign(data))
            }

            SecretKey::SECP256K1(secret_key) => {
                let signature = SECP256K1.sign_ecdsa_recoverable(
                    &secp256k1::Message::from_slice(data).expect("32 bytes"),
                    secret_key,
                );
                let (rec_id, data) = signature.serialize_compact();
                let mut buf = [0; 65];
                buf[0..64].copy_from_slice(&data[0..64]);
                buf[64] = rec_id.to_i32() as u8;
                Signature::SECP256K1(Secp256K1Signature(buf))
            }
            SecretKey::RSA(secret_key) => {
                let sign_data = secret_key.sign(Pkcs1v15Sign::new_unprefixed(), data).unwrap();
                Signature::RSA(Rsa2048Signature(<[u8; 256]>::try_from(sign_data.as_slice()).unwrap()))
            }

        }
    }

    pub fn public_key(&self) -> PublicKey {
        match &self {
            SecretKey::ED25519(secret_key) => PublicKey::ED25519(ED25519PublicKey(
                secret_key.0[ed25519_dalek::SECRET_KEY_LENGTH..].try_into().unwrap(),
            )),
            SecretKey::SECP256K1(secret_key) => {
                let pk = secp256k1::PublicKey::from_secret_key(&SECP256K1, secret_key);
                let serialized = pk.serialize_uncompressed();
                let mut public_key = Secp256K1PublicKey([0; 64]);
                public_key.0.copy_from_slice(&serialized[1..65]);
                PublicKey::SECP256K1(public_key)
            },
            SecretKey::RSA(secret_key) => {
                let pk = secret_key.to_public_key();
                let mut public_key = [0; RAW_PUBLIC_KEY_RSA_2048_LENGTH];
                public_key.copy_from_slice(&pk.to_public_key_der().unwrap().as_bytes());
                PublicKey::RSA(Rsa2048PublicKey(public_key))
            }
        }
    }

    pub fn unwrap_as_ed25519(&self) -> &ED25519SecretKey {
        match self {
            SecretKey::ED25519(key) => key,
            _ => panic!(),
        }
    }
}

impl std::fmt::Display for SecretKey {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
        match self {
            SecretKey::ED25519(secret_key) => {
                write!(f, "{}:{}", KeyType::ED25519, Bs58(&secret_key.0[..]))
            },
            SecretKey::SECP256K1(secret_key) => {
                write!(f, "{}:{}", KeyType::SECP256K1, Bs58(&secret_key[..]))
            },
            SecretKey::RSA(secret_key) => {
                // 先将 DER 编码的密钥存储在一个变量中
                let pkcs8_bytes = secret_key.to_pkcs8_der().unwrap().to_bytes();
                // 然后获取它的切片
                write!(f, "{}:{}", KeyType::RSA2048, Bs58(&pkcs8_bytes.as_slice()))
            },
        }
    }
}

impl FromStr for SecretKey {
    type Err = crate::errors::ParseKeyError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let (key_type, key_data) = split_key_type_data(s)?;
        Ok(match key_type {
            KeyType::ED25519 => Self::ED25519(ED25519SecretKey(decode_bs58(key_data)?)),
            KeyType::SECP256K1 => {
                let data = decode_bs58::<{ secp256k1::constants::SECRET_KEY_SIZE }>(key_data)?;
                let sk = secp256k1::SecretKey::from_slice(&data)
                    .map_err(|err| Self::Err::InvalidData { error_message: err.to_string() })?;
                Self::SECP256K1(sk)
            },
            KeyType::RSA2048 => {
                let buffer = parse_bs58_data(2048, key_data)?;
                let sk = rsa::RsaPrivateKey::from_pkcs8_der(&buffer)
                    .map_err(|err| Self::Err::InvalidData { error_message: err.to_string() })?;
                Self::RSA(sk)
            }
        })
    }
}

impl serde::Serialize for SecretKey {
    fn serialize<S>(
        &self,
        serializer: S,
    ) -> Result<<S as serde::Serializer>::Ok, <S as serde::Serializer>::Error>
    where
        S: serde::Serializer,
    {
        serializer.collect_str(self)
    }
}

impl<'de> serde::Deserialize<'de> for SecretKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, <D as serde::Deserializer<'de>>::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let s = <String as serde::Deserialize>::deserialize(deserializer)?;
        Self::from_str(&s).map_err(|err| serde::de::Error::custom(err.to_string()))
    }
}

const SECP256K1_N: U256 =
    U256([0xbfd25e8cd0364141, 0xbaaedce6af48a03b, 0xfffffffffffffffe, 0xffffffffffffffff]);

// Half of SECP256K1_N + 1.
const SECP256K1_N_HALF_ONE: U256 =
    U256([0xdfe92f46681b20a1, 0x5d576e7357a4501d, 0xffffffffffffffff, 0x7fffffffffffffff]);

const SECP256K1_SIGNATURE_LENGTH: usize = 65;

#[derive(Clone, Eq, PartialEq, Hash, derive_more::From, derive_more::Into)]
pub struct Secp256K1Signature([u8; SECP256K1_SIGNATURE_LENGTH]);

impl Secp256K1Signature {
    pub fn check_signature_values(&self, reject_upper: bool) -> bool {
        let mut r_bytes = [0u8; 32];
        r_bytes.copy_from_slice(&self.0[0..32]);
        let r = U256::from(r_bytes);

        let mut s_bytes = [0u8; 32];
        s_bytes.copy_from_slice(&self.0[32..64]);
        let s = U256::from(s_bytes);

        let s_check = if reject_upper {
            // Reject upper range of s values (ECDSA malleability)
            SECP256K1_N_HALF_ONE
        } else {
            SECP256K1_N
        };

        r < SECP256K1_N && s < s_check
    }

    pub fn recover(
        &self,
        msg: [u8; 32],
    ) -> Result<Secp256K1PublicKey, crate::errors::ParseSignatureError> {
        let recoverable_sig = secp256k1::ecdsa::RecoverableSignature::from_compact(
            &self.0[0..64],
            secp256k1::ecdsa::RecoveryId::from_i32(i32::from(self.0[64])).unwrap(),
        )
        .map_err(|err| crate::errors::ParseSignatureError::InvalidData {
            error_message: err.to_string(),
        })?;
        let msg = Message::from_slice(&msg).unwrap();

        let res = SECP256K1
            .recover_ecdsa(&msg, &recoverable_sig)
            .map_err(|err| crate::errors::ParseSignatureError::InvalidData {
                error_message: err.to_string(),
            })?
            .serialize_uncompressed();

        // Can not fail
        let pk = Secp256K1PublicKey::try_from(&res[1..65]).unwrap();

        Ok(pk)
    }
}

impl TryFrom<&[u8]> for Secp256K1Signature {
    type Error = crate::errors::ParseSignatureError;

    fn try_from(data: &[u8]) -> Result<Self, Self::Error> {
        Ok(Self(data.try_into().map_err(|_| Self::Error::InvalidLength {
            expected_length: 65,
            received_length: data.len(),
        })?))
    }
}

impl Debug for Secp256K1Signature {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        Display::fmt(&Bs58(&self.0), f)
    }
}


// RSA Signature
const RSA2048_SIGNATURE_LENGTH: usize = 256;

#[derive(Clone, Eq, PartialEq, Hash, derive_more::From, derive_more::Into)]
pub struct Rsa2048Signature([u8; RSA2048_SIGNATURE_LENGTH]);

impl TryFrom<&[u8]> for Rsa2048Signature {
    type Error = crate::errors::ParseSignatureError;

    fn try_from(data: &[u8]) -> Result<Self, Self::Error> {
        Ok(Self(data.try_into().map_err(|_| Self::Error::InvalidLength {
            expected_length: RSA2048_SIGNATURE_LENGTH,
            received_length: data.len(),
        })?))
    }
}

impl Debug for Rsa2048Signature {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        Display::fmt(&Bs58(&self.0), f)
    }
}

/// Signature container supporting different curves.
#[derive(Clone, PartialEq, Eq)]
pub enum Signature {
    ED25519(ed25519_dalek::Signature),
    SECP256K1(Secp256K1Signature),
    RSA(Rsa2048Signature),
}

// This `Hash` implementation is safe since it retains the property
// `k1 == k2 ⇒ hash(k1) == hash(k2)`.
impl Hash for Signature {
    fn hash<H: Hasher>(&self, state: &mut H) {
        match self {
            Signature::ED25519(sig) => sig.to_bytes().hash(state),
            Signature::SECP256K1(sig) => sig.hash(state),
            Signature::RSA(sig) => sig.hash(state),
        };
    }
}

impl Signature {
    /// Construct Signature from key type and raw signature blob
    pub fn from_parts(
        signature_type: KeyType,
        signature_data: &[u8],
    ) -> Result<Self, crate::errors::ParseSignatureError> {
        match signature_type {
            KeyType::ED25519 => Ok(Signature::ED25519(ed25519_dalek::Signature::from_bytes(
                <&[u8; ed25519_dalek::SIGNATURE_LENGTH]>::try_from(signature_data).map_err(
                    |err| crate::errors::ParseSignatureError::InvalidData {
                        error_message: err.to_string(),
                    },
                )?,
            ))),
            KeyType::SECP256K1 => {
                Ok(Signature::SECP256K1(Secp256K1Signature::try_from(signature_data).map_err(
                    |_| crate::errors::ParseSignatureError::InvalidData {
                        error_message: "invalid Secp256k1 signature length".to_string(),
                    },
                )?))
            }
            KeyType::RSA2048 => Ok(Signature::RSA(Rsa2048Signature::try_from(signature_data).map_err(
                |_| crate::errors::ParseSignatureError::InvalidData {
                    error_message: "invalid RSA2048 signature length".to_string(),
                },
            )?)),
        }
    }

    /// Verifies that this signature is indeed signs the data with given public key.
    /// Also if public key doesn't match on the curve returns `false`.
    pub fn verify(&self, data: &[u8], public_key: &PublicKey) -> bool {
        match (&self, public_key) {
            (Signature::ED25519(signature), PublicKey::ED25519(public_key)) => {
                match ed25519_dalek::VerifyingKey::from_bytes(&public_key.0) {
                    Err(_) => false,
                    Ok(public_key) => public_key.verify(data, signature).is_ok(),
                }
            }
            (Signature::SECP256K1(signature), PublicKey::SECP256K1(public_key)) => {
                let rec_id =
                    match secp256k1::ecdsa::RecoveryId::from_i32(i32::from(signature.0[64])) {
                        Ok(r) => r,
                        Err(_) => return false,
                    };
                let rsig = match secp256k1::ecdsa::RecoverableSignature::from_compact(
                    &signature.0[0..64],
                    rec_id,
                ) {
                    Ok(r) => r,
                    Err(_) => return false,
                };
                let sig = rsig.to_standard();
                let pdata: [u8; 65] = {
                    // code borrowed from https://github.com/openethereum/openethereum/blob/98b7c07171cd320f32877dfa5aa528f585dc9a72/ethkey/src/signature.rs#L210
                    let mut temp = [4u8; 65];
                    temp[1..65].copy_from_slice(&public_key.0);
                    temp
                };
                let message = match secp256k1::Message::from_slice(data) {
                    Ok(m) => m,
                    Err(_) => return false,
                };
                let pub_key = match secp256k1::PublicKey::from_slice(&pdata) {
                    Ok(p) => p,
                    Err(_) => return false,
                };
                SECP256K1.verify_ecdsa(&message, &sig, &pub_key).is_ok()
            }
            (Signature::RSA(signature), PublicKey::RSA(public_key)) => {
                let pk = rsa::RsaPublicKey::from_public_key_der(&public_key.0).unwrap();
                match pk.verify(Pkcs1v15Sign::new_unprefixed(), &data, signature.0.as_ref()) {
                    Ok(_) => true,
                    Err(_) => false,
                }
            }

            _ => false,
        }
    }

    pub fn key_type(&self) -> KeyType {
        match self {
            Signature::ED25519(_) => KeyType::ED25519,
            Signature::SECP256K1(_) => KeyType::SECP256K1,
            Signature::RSA(_) => KeyType::RSA2048,
        }
    }
}

impl Default for Signature {
    fn default() -> Self {
        Signature::empty(KeyType::ED25519)
    }
}

impl BorshSerialize for Signature {
    fn serialize<W: Write>(&self, writer: &mut W) -> Result<(), Error> {
        match self {
            Signature::ED25519(signature) => {
                BorshSerialize::serialize(&0u8, writer)?;
                writer.write_all(&signature.to_bytes())?;
            }
            Signature::SECP256K1(signature) => {
                BorshSerialize::serialize(&1u8, writer)?;
                writer.write_all(&signature.0)?;
            }
            Signature::RSA(signature) => {
                BorshSerialize::serialize(&2u8, writer)?;
                writer.write_all(&signature.0)?;
            }
        }
        Ok(())
    }
}

impl BorshDeserialize for Signature {
    fn deserialize_reader<R: Read>(rd: &mut R) -> std::io::Result<Self> {
        let key_type = KeyType::try_from(u8::deserialize_reader(rd)?)
            .map_err(|err| Error::new(ErrorKind::InvalidData, err.to_string()))?;
        match key_type {
            KeyType::ED25519 => {
                let array: [u8; ed25519_dalek::SIGNATURE_LENGTH] =
                    BorshDeserialize::deserialize_reader(rd)?;
                // Sanity-check that was performed by ed25519-dalek in from_bytes before version 2,
                // but was removed with version 2. It is not actually any good a check, but we have
                // it here in case we need to keep backward compatibility. Maybe this check is not
                // actually required, but please think carefully before removing it.
                if array[ed25519_dalek::SIGNATURE_LENGTH - 1] & 0b1110_0000 != 0 {
                    return Err(Error::new(ErrorKind::InvalidData, "signature error"));
                }
                Ok(Signature::ED25519(ed25519_dalek::Signature::from_bytes(&array)))
            }
            KeyType::SECP256K1 => {
                let array: [u8; 65] = BorshDeserialize::deserialize_reader(rd)?;
                Ok(Signature::SECP256K1(Secp256K1Signature(array)))
            }
            KeyType::RSA2048 => {
                let array: [u8; 256] = BorshDeserialize::deserialize_reader(rd)?;
                Ok(Signature::RSA(Rsa2048Signature(array)))
            }
        }
    }
}

impl Display for Signature {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
        let buf;
        let (key_type, key_data) = match self {
            Signature::ED25519(signature) => {
                buf = signature.to_bytes();
                (KeyType::ED25519, &buf[..])
            }
            Signature::SECP256K1(signature) => (KeyType::SECP256K1, &signature.0[..]),
            Signature::RSA(signature) => (KeyType::RSA2048, &signature.0[..]),
        };
        write!(f, "{}:{}", key_type, Bs58(&key_data))
    }
}

impl Debug for Signature {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        Display::fmt(self, f)
    }
}

impl serde::Serialize for Signature {
    fn serialize<S>(
        &self,
        serializer: S,
    ) -> Result<<S as serde::Serializer>::Ok, <S as serde::Serializer>::Error>
    where
        S: serde::Serializer,
    {
        serializer.serialize_str(&self.to_string())
    }
}

impl FromStr for Signature {
    type Err = crate::errors::ParseSignatureError;

    fn from_str(value: &str) -> Result<Self, Self::Err> {
        let (sig_type, sig_data) = split_key_type_data(value)?;
        Ok(match sig_type {
            KeyType::ED25519 => {
                let data = decode_bs58::<{ ed25519_dalek::SIGNATURE_LENGTH }>(sig_data)?;
                let sig = ed25519_dalek::Signature::from_bytes(&data);
                Signature::ED25519(sig)
            }
            KeyType::SECP256K1 => Signature::SECP256K1(Secp256K1Signature(decode_bs58(sig_data)?)),
            KeyType::RSA2048 => Signature::RSA(Rsa2048Signature(decode_bs58(sig_data)?)),
        })
    }
}

impl<'de> serde::Deserialize<'de> for Signature {
    fn deserialize<D>(deserializer: D) -> Result<Self, <D as serde::Deserializer<'de>>::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let s = <String as serde::Deserialize>::deserialize(deserializer)?;
        s.parse().map_err(|err: crate::errors::ParseSignatureError| {
            serde::de::Error::custom(err.to_string())
        })
    }
}

/// Helper struct which provides Display implementation for bytes slice
/// encoding them using base58.
// TODO(mina86): Get rid of it once bs58 has this feature.  There’s currently PR
// for that: https://github.com/Nullus157/bs58-rs/pull/97
struct Bs58<'a>(&'a [u8]);

impl<'a> core::fmt::Display for Bs58<'a> {
    fn fmt(&self, fmt: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        debug_assert!(self.0.len() <= 2048);
        // The largest buffer we’re ever encoding is 65-byte long.  Base58
        // increases size of the value by less than 40%.  96-byte buffer is
        // therefore enough to fit the largest value we’re ever encoding.
        let mut buf = [0u8; 2048];
        let len = bs58::encode(self.0).into(&mut buf[..]).unwrap();
        let output = &buf[..len];
        // SAFETY: we know that alphabet can only include ASCII characters
        // thus our result is an ASCII string.
        fmt.write_str(unsafe { std::str::from_utf8_unchecked(output) })
    }
}

/// Helper which decodes fixed-length base58-encoded data.
///
/// If the encoded string decodes into a buffer of different length than `N`,
/// returns error.  Similarly returns error if decoding fails.
fn decode_bs58<const N: usize>(encoded: &str) -> Result<[u8; N], DecodeBs58Error> {
    let mut buffer = [0u8; N];
    decode_bs58_impl(&mut buffer[..], encoded)?;
    Ok(buffer)
}

fn decode_bs58_impl(dst: &mut [u8], encoded: &str) -> Result<(), DecodeBs58Error> {
    let expected = dst.len();
    match bs58::decode(encoded).into(dst) {
        Ok(received) if received == expected => Ok(()),
        Ok(received) => Err(DecodeBs58Error::BadLength { expected, received }),
        Err(bs58::decode::Error::BufferTooSmall) => {
            Err(DecodeBs58Error::BadLength { expected, received: expected.saturating_add(1) })
        }
        Err(err) => Err(DecodeBs58Error::BadData(err.to_string())),
    }
}

fn parse_bs58_data(max_len: usize, encoded: &str) -> Result<Vec<u8>, DecodeBs58Error> {
    // N-byte encoded base58 string decodes to at most N bytes so there’s no
    // need to allocate full max_len output buffer if encoded length is shorter.
    let mut data = vec![0u8; max_len.min(encoded.len())];
    let expected = data.len();
    match bs58::decode(encoded.as_bytes()).into(data.as_mut_slice()) {
        Ok(len)  => {
            data.truncate(len);
            Ok(data)
        }
        Err(bs58::decode::Error::BufferTooSmall) => {
            Err(DecodeBs58Error::BadLength { expected, received: expected.saturating_add(1) })
        }
        Err(err) => Err(DecodeBs58Error::BadData(err.to_string())),
    }
}

enum DecodeBs58Error {
    BadLength { expected: usize, received: usize },
    BadData(String),
}

impl std::convert::From<DecodeBs58Error> for crate::errors::ParseKeyError {
    fn from(err: DecodeBs58Error) -> Self {
        match err {
            DecodeBs58Error::BadLength { expected, received } => {
                crate::errors::ParseKeyError::InvalidLength {
                    expected_length: expected,
                    received_length: received,
                }
            }
            DecodeBs58Error::BadData(error_message) => Self::InvalidData { error_message },
        }
    }
}

impl std::convert::From<DecodeBs58Error> for crate::errors::ParseSignatureError {
    fn from(err: DecodeBs58Error) -> Self {
        match err {
            DecodeBs58Error::BadLength { expected, received } => {
                Self::InvalidLength { expected_length: expected, received_length: received }
            }
            DecodeBs58Error::BadData(error_message) => Self::InvalidData { error_message },
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_sign_verify() {
        for key_type in [KeyType::ED25519, KeyType::SECP256K1, KeyType::RSA2048] {
            let secret_key = SecretKey::from_random(key_type);
            let public_key = secret_key.public_key();
            use sha2::Digest;
            let data = sha2::Sha256::digest(b"123").to_vec();
            let signature = secret_key.sign(&data);
            assert!(signature.verify(&data, &public_key));
        }
    }

    #[test]
    fn signature_verify_fuzzer() {
        bolero::check!().with_type().for_each(
            |(key_type, sign, data, public_key): &(KeyType, [u8; 65], Vec<u8>, PublicKey)| {
                let signature = match key_type {
                    KeyType::ED25519 => {
                        Signature::from_parts(KeyType::ED25519, &sign[..64]).unwrap()
                    }
                    KeyType::SECP256K1 => {
                        Signature::from_parts(KeyType::SECP256K1, &sign[..65]).unwrap()
                    }
                    KeyType::RSA2048 => {
                        Signature::from_parts(KeyType::RSA2048, &sign[..256]).unwrap()
                    }
                };
                let _ = signature.verify(&data, &public_key);
            },
        );
    }

    #[test]
    fn regression_signature_verification_originally_failed() {
        let signature = Signature::from_parts(KeyType::SECP256K1, &[4; 65]).unwrap();
        let _ = signature.verify(&[], &PublicKey::empty(KeyType::SECP256K1));
    }

    #[test]
    fn test_json_serialize_ed25519() {
        let sk = SecretKey::from_seed(KeyType::ED25519, "test");
        let pk = sk.public_key();
        let expected = "\"ed25519:DcA2MzgpJbrUATQLLceocVckhhAqrkingax4oJ9kZ847\"";
        assert_eq!(serde_json::to_string(&pk).unwrap(), expected);
        assert_eq!(pk, serde_json::from_str(expected).unwrap());
        assert_eq!(
            pk,
            serde_json::from_str("\"DcA2MzgpJbrUATQLLceocVckhhAqrkingax4oJ9kZ847\"").unwrap()
        );
        let pk2: PublicKey = pk.to_string().parse().unwrap();
        assert_eq!(pk, pk2);

        let expected = "\"ed25519:3KyUuch8pYP47krBq4DosFEVBMR5wDTMQ8AThzM8kAEcBQEpsPdYTZ2FPX5ZnSoLrerjwg66hwwJaW1wHzprd5k3\"";
        assert_eq!(serde_json::to_string(&sk).unwrap(), expected);
        assert_eq!(sk, serde_json::from_str(expected).unwrap());

        let signature = sk.sign(b"123");
        let expected = "\"ed25519:3s1dvZdQtcAjBksMHFrysqvF63wnyMHPA4owNQmCJZ2EBakZEKdtMsLqrHdKWQjJbSRN6kRknN2WdwSBLWGCokXj\"";
        assert_eq!(serde_json::to_string(&signature).unwrap(), expected);
        assert_eq!(signature, serde_json::from_str(expected).unwrap());
        let signature_str: String = signature.to_string();
        let signature2: Signature = signature_str.parse().unwrap();
        assert_eq!(signature, signature2);
    }

    #[test]
    fn test_json_serialize_secp256k1() {
        use sha2::Digest;
        let data = sha2::Sha256::digest(b"123").to_vec();

        let sk = SecretKey::from_seed(KeyType::SECP256K1, "test");
        let pk = sk.public_key();
        let expected = "\"secp256k1:5ftgm7wYK5gtVqq1kxMGy7gSudkrfYCbpsjL6sH1nwx2oj5NR2JktohjzB6fbEhhRERQpiwJcpwnQjxtoX3GS3cQ\"";
        assert_eq!(serde_json::to_string(&pk).unwrap(), expected);
        assert_eq!(pk, serde_json::from_str(expected).unwrap());
        let pk2: PublicKey = pk.to_string().parse().unwrap();
        assert_eq!(pk, pk2);

        let expected = "\"secp256k1:X4ETFKtQkSGVoZEnkn7bZ3LyajJaK2b3eweXaKmynGx\"";
        assert_eq!(serde_json::to_string(&sk).unwrap(), expected);
        assert_eq!(sk, serde_json::from_str(expected).unwrap());

        let signature = sk.sign(&data);
        let expected = "\"secp256k1:5N5CB9H1dmB9yraLGCo4ZCQTcF24zj4v2NT14MHdH3aVhRoRXrX3AhprHr2w6iXNBZDmjMS1Ntzjzq8Bv6iBvwth6\"";
        assert_eq!(serde_json::to_string(&signature).unwrap(), expected);
        assert_eq!(signature, serde_json::from_str(expected).unwrap());
        let signature_str: String = signature.to_string();
        let signature2: Signature = signature_str.parse().unwrap();
        assert_eq!(signature, signature2);
    }

    #[test]
    fn test_json_serialize_rsa2048() {
        use sha2::Digest;
        let data = sha2::Sha256::digest(b"123").to_vec();

        let sk = SecretKey::from_seed(KeyType::RSA2048, "test");
        let pk = sk.public_key();
        let expected = "\"rsa2048:2TuPVgMCHJy5atawrsADEzjP7MCVbyyCA89UW6Wvjp9HrBuhZpGCRvEqExjN4wDfrT97k75BySeWiWgDoRmWBCVMQzCNFWQcfVmzeeZJFnVVceSziJsciYeCEeJGzjQnWBj4PEESKNgdKGWrQyUckRvknPQE3v7GVp9tXRPL81nLAgNm29E4SQ3u6ZV3DzJTCnnsoW75H8vdMMRY3zNzpTWKjEkMYA9qow6nnpS9asJ3HqXshDh3ookoAqzYgVwYmh2CDYFyw3cdwzimFFTYv3STud6erWxiMogeqP2XNnUyFYPKRWrhrrY966QDk4mEz1JgvBN9U4Vh5tsJGZLrZQPpt1owEjrGuCB6iqZQFwKxxjmNTcCZXZZn2WbdYVnSXGFR68uAjtPmHktzwS\"";
        assert_eq!(serde_json::to_string(&pk).unwrap(), expected);
        assert_eq!(pk, serde_json::from_str(expected).unwrap());
        let pk2: PublicKey = pk.to_string().parse().unwrap();
        assert_eq!(pk, pk2);

        let expected = "\"rsa2048:riiewRJm2wpE3rWTs1ikUc83so8ZXMX8vp9dUTnRgMC8GyfLr99MgiVFAbK3mdNq6mGY5dNdUfn3anQVSqFHL4sPbZD4w7QBx5Dzj4MzqJ8LjqmiKxE64G9tNDjfzkyYdinPssorC9yab7EhBMe24m3dMSnwHBJHQsXXaGibBtJUBcgPCbwYerZjfJB7TjMrj7WF1A2Q9SNdLUMYNX5CuKbWnpmrgFdkUzR1rZjrcgzSyUs4LrWwPBy2uA8PjJLwRabvoPpSr6hTMoHjeGMnQsLbVxKs7SC5aucdXru6ox9jJeD9Jackd5HKjAmobBaKiR1i9f7EsoxfsmibsqML8B5fFuHCRzMT6Ea5oEETevn4H5uBszJtrPJQpM5kwNogcNchHhK8GG2FZDGY5bsZuJEvzrWeuK7XR1ef1JmAmCtSqQNLe42CkqvBun8Cwj61Gf2rkvU2He1Wc6Lg81CwQKLUZTFRDXkdmaJEjAdweXhcksbMhajDp1D5mHtL3LY3FvxvgZpHxVq4gnKQTQenCvmgoH6JAJNQK5pmP68hMaJ4EZ45LgCzfzNs5eYYq3jqUQHGY7mvKi7E4ZFkY8fmgk5VQWcTyb3WeiqXzSYB79c2cR4XSUgmXiaFnLUYM1kqaNzeUhiprCTC43k9MhX5kMw3VRcg2RzrdnofHetPn75MPeR4g9i4kooZyRRkEvdg4YAWL6rhYQ5vV99cbQvTZSAzYTasiHfUKLkB76yoXJiok57tAjbz9XBGgWeqGRF8UFFcMDw8KJqrrEA4E1FhYEEYNR84kuU4ZwnnJakBCXf1UoYC7RKJEiWtcBqcL3Epcp3x6d4qxLij3M1pCDeFPZPYyMqYPvM8yB6GfMVwcycJSxWjK7cxmVRPF9WT3HyVNqFHA4o1aXHJ9LGMgDdVCUSk1QfEC1kLxMMFZMVY6RK6ycUPmotJxbJgBL9SAFypzNg63tipocAXucqaJ3NQrA5ujLnV4GhrmwF9Eo6T7FH9qgqsKZV1FN7m83TtXUuRqSDMdpDLLNotcC4MQ6nFH46R73ct8CE4ibn6j4dtPMMJrEuWQqAE8tqpvGJoxifvVfwmtJMvozTTu69DgXn38MHZL2f3K25M7iW4yWiZjve4b7AFXhnaaKQuCwoZ6CNf31X2STT29wFvw6HMZNZt4WdXMxUrgP5mkM8r2Fio8iEQUbSfhrAj3SuZXDV3xiRYRXb45cL7umoZ446YctmQuyHzaRfP8yLsy3Y7Bn8GGTj4bbzPNhT4r4QHitobymKScePdFTms4P8HNogebkBf4K7QrNSJxA4EVRgf9aP4KejHUfhq9v7pLGsfXv3rGaxRZnCNrgTYY215e8FoJcx8mQGvykCRejto8Gghp1gw5n5eC3ddMUiYqphteoYfuhVYfiweMDSiRrajko4JAxuXpvHRVeTwSypPYUkiazcog7z8bgPSq1FNS8Vnqhyx4oSj5rBGXTK8y7MR9zPB8yN78DacxPBBLfUcMvVan4GueCi2wxq9KL8XMj8DvDccBBotc8c1jftgaYdLqESVqpiKj3ZSu8Ui3SpdhELMFzk22kwRXN2p9nK78u94Gpp44J9upyiNpHsLbkB3kpT4vtvxa8P9H1YhMqVRB2k9EhVHUwATRVb3uoznRqXVnXmE8cq\"";
        assert_eq!(serde_json::to_string(&sk).unwrap(), expected);
        assert_eq!(sk, serde_json::from_str(expected).unwrap());

        let signature = sk.sign(&data);
        let expected = "\"rsa2048:9UXu2UtEzfgJWw5goaHcjAueJcRkwNS9VPHsF1Re2MR8p7WcA9Q77DTPAMWXkDnEsaebWFwrQHqqk8jAZfLsZDTBmDQ28XNsPgsx3wJkwrujYT5o99Zf6J1SbFK3umfzgo26BNWGLD44nrqhFJDwy1UdXqQPMKGKs7P56g2dqbEe3daoVze6UrhHQAdLbEXN9BQJBkNz254MLey7pzbAforMfoqy2S3RdvgFRQuXdgHbsXSHJEemmQEVpMiMvDW5Hz4vVMx3XaLkLLUQfqpT9Tom6NbGsNfPn7M1Ge1xXEFs25Zcqv3e7mq5Ps8pXovCexeznHJz5VSkDGY2h2r6tpACjDM2LW\"";
        assert_eq!(serde_json::to_string(&signature).unwrap(), expected);
        assert_eq!(signature, serde_json::from_str(expected).unwrap());
        let signature_str: String = signature.to_string();
        let signature2: Signature = signature_str.parse().unwrap();
        assert_eq!(signature, signature2);
    }

    #[test]
    fn test_borsh_serialization() {
        use sha2::Digest;
        let data = sha2::Sha256::digest(b"123").to_vec();
        for key_type in [KeyType::ED25519, KeyType::SECP256K1, KeyType::RSA2048] {
            let sk = SecretKey::from_seed(key_type, "test");
            let pk = sk.public_key();
            let bytes = borsh::to_vec(&pk).unwrap();
            assert_eq!(PublicKey::try_from_slice(&bytes).unwrap(), pk);

            let signature = sk.sign(&data);
            let bytes = borsh::to_vec(&signature).unwrap();
            assert_eq!(Signature::try_from_slice(&bytes).unwrap(), signature);

            assert!(PublicKey::try_from_slice(&[0]).is_err());
            assert!(Signature::try_from_slice(&[0]).is_err());
        }
    }

    #[test]
    fn test_invalid_data() {
        let invalid = "\"secp256k1:2xVqteU8PWhadHTv99TGh3bSf\"";
        assert!(serde_json::from_str::<PublicKey>(invalid).is_err());
        assert!(serde_json::from_str::<SecretKey>(invalid).is_err());
        assert!(serde_json::from_str::<Signature>(invalid).is_err());
    }

    #[test]
    fn test_invalid_rsa_data() {
        let invalid = "\"rsa2048:riiewRJm2wpE3rWTs1ikUc83so8ZXMX8vp9dUTnRgMC8GyfLr99MgiVFAbK3mdNq6mGY5dNdUfn3anQVSqFHL4sPbZD4w7QBx5Dzj4MzqJ8LjqmiKxE64G9tNDjfzkyYdinPssorC9yab7EhBMe24m3dMSnwHBJHQsXXaGibBtJUBcgPCbwYerZjfJB7TjMrj7WF1A2Q9SNdLUMYNX5CuKbWnpmrgFdkUzR1rZjrcgzSyUs4LrWwPBy2uA8PjJLwRabvoPpSr6hTMoHjeGMnQsLbVxKs7SC5aucdXru6ox9jJeD9Jackd5HKjAmobBaKiR1i9f7EsoxfsmibsqML8B5fFuHCRzMT6Ea5oEETevn4H5uBszJtrPJQpM5kwNogcNchHhK8GG2FZDGY5bsZuJEvzrWeuK7XR1ef1JmAmCtSqQNLe42CkqvBun8Cwj61Gf2rkvU2He1Wc6Lg81CwQKLUZTFRDXkdmaJEjAdweXhcksbMhajDp1D5mHtL3LY3FvxvgZpHxVq4gnKQTQenCvmgoH6JAJNQK5pmP68hMaJ4EZ45LgCzfzNs5eYYq3jqUQHGY7mvKi7E4ZFkY8fmgk5VQWcTyb3WeiqXzSYB79c2cR4XSUgmXiaFnLUYM1kqaNzeUhiprCTC43k9MhX5kMw3VRcg2RzrdnofHetPn75MPeR4g9i4kooZyRRkEvdg4YAWL6rhYQ5vV99cbQvTZSAzYTasiHfUKLkB76yoXJiok57tAjbz9XBGgWeqGRF8UFFcMDw8KJqrrEA4E1FhYEEYNR84kuU4ZwnnJakBCXf1UoYC7RKJEiWtcBqcL3Epcp3x6d4qxLij3M1pCDeFPZPYyMqYPvM8yB6GfMVwcycJSxWjK7cxmVRPF9WT3HyVNqFHA4o1aXHJ9LGMgDdVCUSk1QfEC1kLxMMFZMVY6RK6ycUPmotJxbJgBL9SAFypzNg63tipocAXucqaJ3NQrA5ujLnV4GhrmwF9Eo6T7FH9qgqsKZV1FN7m83TtXUuRqSDMdpDLLNotcC4MQ6nFH46R73ct8CE4ibn6j4dtPMMJrEuWQqAE8tqpvGJoxifvVfwmtJMvozTTu69DgXn38MHZL2f3K25M7iW4yWiZjve4b7AFXhnaaKQuCwoZ6CNf31X2STT29wFvw6HMZNZt4WdXMxUrgP5mkM8r2Fio8iEQUbSfhrAj3SuZXDV3xiRYRXb45cL7umoZ446YctmQuyHzaRfP8yLsy3Y7Bn8GGTj4bbzPNhT4r4QHitobymKScePdFTms4P8HNogebkBf4K7QrNSJxA4EVRgf9aP4KejHUfhq9v7pLGsfXv3rGaxRZnCNrgTYY215e8FoJcx8mQGvykCRejto8Gghp1gw5n5eC3ddMUiYqphteoYfuhVYfiweMDSiRrajko4JAxuXpvHRVeTwSypPYUkiazcog7z8bgPSq1FNS8Vnqhyx4oSj5rBGXTK8y7MR9zPB8yN78DacxPBBLfUcMvVan4GueCi2wxq9KL8XMj8DvDccBBotc8c1jftgaYdLqESVqpiKj3ZSu8Ui3SpdhELMFzk22kwRXN2p9nK78u94Gpp44J9upyiNpHsLbkB3kpT4vtvxa8P9H1YhMqVRB2k9EhVHUwATRVb3uoznRqXVnXmE8cq\"";
        assert!(serde_json::from_str::<PublicKey>(invalid).is_err());
        assert!(serde_json::from_str::<SecretKey>(invalid).is_ok());
        assert!(serde_json::from_str::<Signature>(invalid).is_err());
    }
}