1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//!
//! Algebraic _fields_.
//!
//! An algebraic _field_ is a _commutative_ _ring_ (with identity) `R`,
//! where each _invertible_ field element `f` has a unique
//! _multiplicative_ _inverse_ `f^-1`. The inverse operation is called
//! _invert_.
//!
//! # Axioms
//!
//! ```notrust
//! ∀g, 1 ∈ R
//!
//! Inverse: ∃g^-1 ∈ R: g × g^-1 = g^-1 × g = 1.
//! ```
//!
//! # References
//!
//! See [references] for a formal definition of a field.
//!
#![doc(include = "../doc/references.md")]

use crate::helpers::*;
use crate::numeric::*;
use crate::com_ring::*;


///
/// An algebraic _field_.
///
pub trait Field: ComRing {

  /// The unique _multiplicative_ _inverse_ of a field element. The
  /// inverse is only defined for _invertible_ field elements.
  fn invert(&self) -> Self;


  /// Test for an _invertible_ field element.
  fn is_invertible(&self) -> bool {
    *self != Self::zero()
  }


  /// The multiplicative "division" of two field elements.
  fn div(&self, other: &Self) -> Self {
    self.mul(&other.invert())
  }
}


///
/// The _left_ _multiplicative_ _inverse_ axiom.
///
pub fn left_inverse<T: Field>(x: &T) -> bool {
  x.invert().mul(x) == T::one()
}


///
/// The _right_ _multiplicative_ _inverse_ axiom.
///
pub fn right_inverse<T: Field>(x: &T) -> bool {
  x.mul(&x.invert()) == T::one()
}


///
/// The _two_ _sided_ _multiplicative_ _inverse_ axiom.
///
pub fn inverse<T: Field>(x: &T) -> bool {
  left_inverse(x) && right_inverse(x)
}


///
/// The derived property of _additive_ _cancellation_.
///
pub fn add_cancellation<T: Field>(x: &T, y: &T, z: &T) -> bool {
  imply(x.add(y) == z.add(y), x == z)
}


///
/// The derived property of _multiplicative_ _cancellation_.
///
pub fn mul_cancellation<T: Field>(x: &T, y: &T, z: &T) -> bool {
  if y.is_zero() {return true;}

  imply(x.mul(y) == z.mul(y), x == z)
}


///
/// The derived property of _zero_ _cancellation_.
///
pub fn zero_cancellation<T: Field>(x: &T, y: &T) -> bool {
  imply(x.mul(y).is_zero(), x.is_zero() || y.is_zero())
}


///
/// The left _numeric_ _multiplicative_ _inverse_ axiom.
///
pub fn num_left_inverse<T: Field + NumEq>(x: &T, eps: &T::Eps) -> bool {
  x.invert().mul(x).num_eq(&T::one(), eps)
}


///
/// The right _numeric_ _multiplicative_ _inverse_ axiom.
///
pub fn num_right_inverse<T: Field + NumEq>(x: &T, eps: &T::Eps) -> bool {
  x.mul(&x.invert()).num_eq(&T::one(), eps)
}


///
/// The two sided _numeric_ _multiplicative_ _inverse_ axiom.
///
pub fn num_inverse<T: Field + NumEq>(x: &T, eps: &T::Eps) -> bool {
  num_left_inverse(x, eps) && num_right_inverse(x, eps)
}


///
/// The derived property of _numeric_ _additive_ _cancellation_.
///
pub fn num_add_cancellation<T: Field + NumEq>(x: &T, y: &T, z: &T, eps: &T::Eps) -> bool {
  imply(x.add(y).num_eq(&z.add(y), eps), x.num_eq(z, eps))
}


///
/// The derived property of _numeric_ _multiplicative_ _cancellation_.
///
pub fn num_mul_cancellation<T: Field + NumEq>(x: &T, y: &T, z: &T, eps: &T::Eps) -> bool {
  if y.is_zero() {return true;}

  imply(x.mul(y).num_eq(&z.mul(y), eps), x.num_eq(z, eps))
}


///
/// The derived property of _numeric_ _zero_ _cancellation_.
///
pub fn num_zero_cancellation<T: Field + NumEq>(x: &T, y: &T, _eps: &T::Eps) -> bool {
  imply(x.mul(y).is_zero(), x.is_zero() || y.is_zero())
}


///
/// A macro for `Field` implementations for built-in floating point
/// types. Probably not needed if Rust had a `Float` super-trait.
///
macro_rules! float_field {
  ($type:ty) => {
    impl Field for $type {

      /// Inversion is just floating point inverse.
      fn invert(&self) -> Self {
        self.recip()
      }
    }
  };

  ($type:ty, $($others:ty),+) => {
    float_field! {$type}
    float_field! {$($others),+}
  };
}


// Field floating point types.
float_field! {
  f32, f64
}


///
/// 0-tuples form a field.
///
impl Field for () {

  /// Inverted value can only be `()`.
  fn invert(&self) -> Self {}


  /// The only value is invertible.
  fn is_invertible(&self) -> bool {
    true
  }
}


///
/// 1-tuples form a field when their items do.
///
impl<A: Field> Field for (A,) {

  /// Inversion is by matching element.
  fn invert(&self) -> Self {
    (self.0.invert(), )
  }


  /// Invertibility is across the tuple.
  fn is_invertible(&self) -> bool {
    self.0.is_invertible()
  }
}


///
/// 2-tuples form a field when their items do.
///
impl<A: Field, B: Field> Field for (A, B) {

  /// Inversion is by matching element.
  fn invert(&self) -> Self {
    (self.0.invert(), self.1.invert())
  }


  /// Invertibility is across the tuple.
  fn is_invertible(&self) -> bool {
    self.0.is_invertible() && self.1.is_invertible()
  }
}


///
/// 3-tuples form a field when their items do.
///
impl<A: Field, B: Field, C: Field> Field for (A, B, C) {

  /// Inversion is by matching element.
  fn invert(&self) -> Self {
    let (a, b, c) = self;

    (a.invert(), b.invert(), c.invert())
  }


  /// Invertibility is across the tuple.
  fn is_invertible(&self) -> bool {
    let (a, b, c) = self;

    a.is_invertible() && b.is_invertible() && c.is_invertible()
  }
}


///
/// A macro for `Field` implementations for arrays. Maybe not needed if
/// Rust had _const_ _generics_.
///
macro_rules! array_field {
  ($size:expr) => {
    impl<T: Copy + Field> Field for [T; $size] {

      // Invert each array element.
      fn invert(&self) -> Self {
        self.map(&|&x| x.invert())
      }


      // Test each array element for invertibility.
      fn is_invertible(&self) -> bool {
        self.all(&|&x| x.is_invertible())
      }
    }
  };

  ($size:expr, $($others:expr),+) => {
    array_field! {$size}
    array_field! {$($others),+}
  };
}


// Array field types.
array_field! {
  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
}


// Module unit tests are in a sub-module.
#[cfg(test)]
mod tests;