uff_relax/forcefield/
mod.rs1pub mod interactions;
2pub mod parallel;
3pub mod sequential;
4
5use crate::atom::{Atom, Bond, UffAtomType};
6use crate::cell::UnitCell;
7use crate::params::element_symbol;
8use glam::DVec3;
9
10const PARALLEL_THRESHOLD: usize = 1000;
11
12#[derive(Debug, Default, Clone, Copy)]
13pub struct EnergyTerms {
14 pub bond: f64,
15 pub angle: f64,
16 pub torsion: f64,
17 pub non_bonded: f64,
18 pub total: f64,
19}
20
21pub struct System {
23 pub atoms: Vec<Atom>,
25 pub bonds: Vec<Bond>,
27 pub cell: UnitCell,
29}
30
31impl System {
32 pub fn new(atoms: Vec<Atom>, bonds: Vec<Bond>, cell: UnitCell) -> Self {
39 let mut system = Self { atoms, bonds, cell };
40 system.auto_assign_uff_types();
41 system
42 }
43
44 pub fn auto_assign_uff_types(&mut self) {
46 let n = self.atoms.len();
47 let mut adj = vec![Vec::new(); n];
48 for bond in &self.bonds {
49 adj[bond.atom_indices.0].push(bond);
50 adj[bond.atom_indices.1].push(bond);
51 }
52
53 for i in 0..n {
54 let z = self.atoms[i].element;
55 let symbol = element_symbol(z);
56 let neighbors = &adj[i];
57 let n_neighbors = neighbors.len();
58 let has_order_1_5 = neighbors.iter().any(|b| (b.order - 1.5).abs() < 0.1);
59 let has_order_2_0 = neighbors.iter().any(|b| (b.order - 2.0).abs() < 0.1);
60
61 let label = match z {
62 6 => { match n_neighbors {
64 4 => "C_3".to_string(),
65 3 => if has_order_1_5 || has_order_2_0 { "C_R".to_string() } else { "C_2".to_string() },
66 2 => "C_1".to_string(),
67 _ => "C_3".to_string(),
68 }
69 }
70 1 => "H_".to_string(),
71 7 => { match n_neighbors {
73 3 => if has_order_1_5 { "N_R".to_string() } else { "N_3".to_string() },
74 2 => "N_2".to_string(),
75 1 => "N_1".to_string(),
76 _ => "N_3".to_string(),
77 }
78 }
79 8 => { if has_order_1_5 { "O_R".to_string() }
81 else if n_neighbors == 1 && has_order_2_0 { "O_2".to_string() }
82 else { "O_3".to_string() }
83 }
84 _ => {
85 if n_neighbors == 0 { format!("{}_", symbol) }
86 else { format!("{}_{}", symbol, n_neighbors) }
87 }
88 };
89 self.atoms[i].uff_type = UffAtomType(label);
90 }
91 }
92
93 pub fn compute_forces(&mut self) -> EnergyTerms {
95 self.compute_forces_with_threads(0, 6.0) }
97
98 pub fn compute_forces_with_threads(&mut self, num_threads: usize, cutoff: f64) -> EnergyTerms {
99 if num_threads == 1 {
100 return self.compute_forces_serial(cutoff);
101 }
102
103 let use_parallel = if num_threads > 1 {
104 true
105 } else {
106 self.atoms.len() >= PARALLEL_THRESHOLD
107 };
108
109 if use_parallel {
110 if num_threads > 1 {
111 let pool = rayon::ThreadPoolBuilder::new().num_threads(num_threads).build().unwrap();
112 pool.install(|| self.compute_forces_parallel(cutoff))
113 } else {
114 crate::init_parallelism(None);
115 self.compute_forces_parallel(cutoff)
116 }
117 } else {
118 self.compute_forces_serial(cutoff)
119 }
120 }
121
122 fn compute_forces_serial(&mut self, cutoff: f64) -> EnergyTerms {
123 let mut energy = EnergyTerms::default();
124 for atom in &mut self.atoms { atom.force = DVec3::ZERO; }
125
126 let mut adj = vec![Vec::new(); self.atoms.len()];
127 for b in &self.bonds {
128 let (u, v) = b.atom_indices;
129 adj[u].push(v);
130 adj[v].push(u);
131 }
132
133 energy.bond = self.compute_bond_forces_sequential();
134 energy.angle = self.compute_angle_forces_sequential();
135 energy.torsion = self.compute_torsion_forces_sequential();
136 energy.non_bonded = self.compute_non_bonded_forces_sequential_cell_list(&adj, cutoff);
137 energy.total = energy.bond + energy.angle + energy.torsion + energy.non_bonded;
138
139 energy
140 }
141
142 fn compute_forces_parallel(&mut self, cutoff: f64) -> EnergyTerms {
143 let mut energy = EnergyTerms::default();
144 for atom in &mut self.atoms { atom.force = DVec3::ZERO; }
145
146 let mut adj = vec![Vec::new(); self.atoms.len()];
147 for b in &self.bonds {
148 let (u, v) = b.atom_indices;
149 adj[u].push(v);
150 adj[v].push(u);
151 }
152
153 energy.bond = self.compute_bond_forces_parallel();
154 energy.angle = self.compute_angle_forces_parallel();
155 energy.torsion = self.compute_torsion_forces_parallel();
156 energy.non_bonded = self.compute_non_bonded_forces_parallel_cell_list(&adj, cutoff);
157 energy.total = energy.bond + energy.angle + energy.torsion + energy.non_bonded;
158
159 energy
160 }
161
162 pub(crate) fn get_cell_neighbors(&self, cl: &crate::spatial::CellList, pos: DVec3, _cutoff: f64) -> Vec<usize> {
163 let mut neighbors = Vec::new();
164 let rel = pos - cl.min_p;
165 let ix = (rel.x / cl.cell_size.x) as i32;
166 let iy = (rel.y / cl.cell_size.y) as i32;
167 let iz = (rel.z / cl.cell_size.z) as i32;
168
169 for dx in -1..=1 {
170 for dy in -1..=1 {
171 for dz in -1..=1 {
172 let nx = ix + dx; let ny = iy + dy; let nz = iz + dz;
173 if nx >= 0 && nx < cl.dx as i32 && ny >= 0 && ny < cl.dy as i32 && nz >= 0 && nz < cl.dz as i32 {
174 let idx = (nx as usize * cl.dy * cl.dz) + (ny as usize * cl.dz) + nz as usize;
175 neighbors.extend(&cl.cells[idx]);
176 }
177 }
178 }
179 }
180 neighbors
181 }
182
183 pub(crate) fn get_exclusion_scale(&self, i: usize, j: usize, adj: &[Vec<usize>]) -> (bool, f64) {
184 for &n1 in &adj[i] {
185 if n1 == j { return (true, 0.0); }
186 }
187 for &n1 in &adj[i] {
188 for &n2 in &adj[n1] {
189 if n2 == j { return (true, 0.0); }
190 }
191 }
192 for &n1 in &adj[i] {
193 for &n2 in &adj[n1] {
194 for &n3 in &adj[n2] {
195 if n3 == j { return (false, 0.5); }
196 }
197 }
198 }
199 (false, 1.0)
200 }
201}