1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
// Axel '0vercl0k' Souchet - July 29 2023
//! This module is where the parsing logic is implemented. The [`UserDumpParser`] can memory map a file by default but
//! users can also build an instance from a slice they got from somewhere else.
use crate::map::Cursor;
use crate::map::MappedFile;
use crate::structs::*;
use std::io::{Read, Seek};
use std::{collections, fmt, io, mem, ops, path, slice, vec};

/// Disables all access to the committed region of pages. An attempt to read from, write to, or execute the committed
/// region results in an access violation.
pub const PAGE_NOACCESS: u32 = 1;
/// Enables read-only access to the committed region of pages. An attempt to write to the committed region results in
/// an access violation. If Data Execution Prevention is enabled, an attempt to execute code in the committed region
/// results in an access violation.
pub const PAGE_READONLY: u32 = 2;
/// Enables read-only or read/write access to the committed region of pages. If Data Execution Prevention is enabled,
/// attempting to execute code in the committed region results in an access violation.
pub const PAGE_READWRITE: u32 = 4;
/// Enables read-only or copy-on-write access to a mapped view of a file mapping object. An attempt to write to a
/// committed copy-on-write page results in a private copy of the page being made for the process. The private page is
/// marked as PAGE_READWRITE, and the change is written to the new page. If Data Execution Prevention is enabled,
/// attempting to execute code in the committed region results in an access violation.
pub const PAGE_WRITECOPY: u32 = 8;
/// Enables execute access to the committed region of pages. An attempt to write to the committed region results in an
/// access violation.
pub const PAGE_EXECUTE: u32 = 16;
/// Enables execute or read-only access to the committed region of pages. An attempt to write to the committed region
/// results in an access violation.
pub const PAGE_EXECUTE_READ: u32 = 32;
/// Enables execute, read-only, or read/write access to the committed region of pages.
pub const PAGE_EXECUTE_READWRITE: u32 = 64;
/// Enables execute, read-only, or copy-on-write access to a mapped view of a file mapping object. An attempt to write
/// to a committed copy-on-write page results in a private copy of the page being made for the process. The private
/// page is marked as PAGE_EXECUTE_READWRITE, and the change is written to the new page.
pub const PAGE_EXECUTE_WRITECOPY: u32 = 128;
/// Pages in the region become guard pages. Any attempt to access a guard page causes the system to raise a
/// STATUS_GUARD_PAGE_VIOLATION exception and turn off the guard page status. Guard pages thus act as a one-time access
/// alarm.
pub const PAGE_GUARD: u32 = 0x1_00;
/// Sets all pages to be non-cachable. Applications should not use this attribute except when explicitly required for
/// a device. Using the interlocked functions with memory that is mapped with SEC_NOCACHE can result in an
/// EXCEPTION_ILLEGAL_INSTRUCTION exception.
pub const PAGE_NOCACHE: u32 = 0x2_00;
/// Sets all pages to be write-combined. Applications should not use this attribute except when explicitly required for
/// a device. Using the interlocked functions with memory that is mapped as write-combined can result in an
/// EXCEPTION_ILLEGAL_INSTRUCTION exception.
pub const PAGE_WRITECOMBINE: u32 = 0x4_00;

/// The memory rights constants on Windows make it annoying to know if the page is readable / writable / executable,
/// so we have to create our own masks.
/// A page is readable if it is protected with any of the below rights.
const READABLE: u32 = PAGE_READONLY
    | PAGE_READWRITE
    | PAGE_EXECUTE_READ
    | PAGE_EXECUTE_READWRITE
    | PAGE_EXECUTE_WRITECOPY
    | PAGE_WRITECOPY;

/// A page is writable if it is protected with any of the below rights.
const WRITABLE: u32 = PAGE_READWRITE | PAGE_EXECUTE_READWRITE | PAGE_WRITECOPY;
/// A page is executable if it is protected with any of the below rights.
const EXECUTABLE: u32 =
    PAGE_EXECUTE | PAGE_EXECUTE_READ | PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY;

/// A DLL loaded in the virtual address space.
#[allow(clippy::len_without_is_empty)]
#[derive(Default, Debug)]
pub struct Module<'a> {
    /// The range of where the module is loaded in memory at.
    pub range: ops::Range<u64>,
    /// PE checksum of the module.
    pub checksum: u32,
    ///
    pub time_date_stamp: u32,
    /// The module path on the file system.
    pub path: path::PathBuf,
    pub version_info: FixedFileInfo,
    pub cv_record: &'a [u8],
    pub misc_record: &'a [u8],
}

impl<'a> Module<'a> {
    /// Build a new [`Module`] instance.
    fn new(
        entry: ModuleEntry,
        module_name: String,
        cv_record: &'a [u8],
        misc_record: &'a [u8],
    ) -> Self {
        let start = entry.base_of_image;
        let end = entry.base_of_image + entry.size_of_image as u64;
        let range = ops::Range { start, end };
        if range.is_empty() {
            panic!("range is malformed");
        }

        Self {
            range,
            checksum: entry.checksum,
            time_date_stamp: entry.time_date_stamp,
            path: module_name.into(),
            version_info: entry.version_info,
            cv_record,
            misc_record,
        }
    }

    /// Get the file name of the module. This returns [`None`] if the file name
    /// can't be converted to a Rust string.
    pub fn file_name(&self) -> Option<&str> {
        self.path.file_name().unwrap().to_str()
    }

    /// Get the address of where the module was loaded at.
    pub fn start_addr(&self) -> u64 {
        self.range.start
    }

    /// Get the address of where the last byte of the module was loaded at.
    pub fn end_addr(&self) -> u64 {
        self.range.end - 1
    }

    /// Get the length of the range of memory the module was loaded at.
    pub fn len(&self) -> u64 {
        self.range.end - self.range.start
    }
}

/// A [`ThreadContext`] stores the thread contexts for the architecture that are
/// supported by the library.
#[derive(Debug)]
pub enum ThreadContext<'a> {
    /// The Intel x86 thread context.
    X86(&'a ThreadContextX86),
    /// The Intel x64 thread context.
    X64(&'a ThreadContextX64),
}

/// Display the [`ThreadContext`] like WinDbg would.
impl<'a> fmt::Display for ThreadContext<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::X86(ctx) => ctx.fmt(f),
            Self::X64(ctx) => ctx.fmt(f),
        }
    }
}

/// A thread that was running when the dump was generated.
#[derive(Debug)]
pub struct Thread<'a> {
    /// The thread ID.
    pub id: u32,
    /// The suspend count counter cf [Freezing and Suspending Threads](https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/controlling-processes-and-threads).
    pub suspend_count: u32,
    /// The priority class cf [Priority Class](https://learn.microsoft.com/en-us/windows/win32/procthread/scheduling-priorities).
    pub priority_class: u32,
    /// Thread priority cf [Priority level](https://learn.microsoft.com/en-us/windows/win32/procthread/scheduling-priorities).
    pub priority: u32,
    /// The thread environment block address.
    pub teb: u64,
    /// The thread context.
    context: ThreadContext<'a>,
}

impl<'a> Thread<'a> {
    /// Build a new [`Thread`] instance.
    fn new(entry: ThreadEntry, context: ThreadContext<'a>) -> Self {
        Self {
            id: entry.thread_id,
            suspend_count: entry.suspend_count,
            priority_class: entry.priority_class,
            priority: entry.priority,
            teb: entry.teb,
            context,
        }
    }

    /// Get a reference to the [`ThreadContext`].
    pub fn context(&self) -> &ThreadContext {
        &self.context
    }
}

/// A block of memory in the address space that isn't a [`Module`]. [`MemBlock`]
/// can have `data` associated with it but isn't a guarantee (think about a
/// memory region that is mapped as `PAGE_NOACCESS`).
#[derive(Default, Debug)]
#[allow(clippy::len_without_is_empty)]
pub struct MemBlock<'a> {
    /// Range over the start/end address of the memory region.
    pub range: ops::Range<u64>,
    /// The base of the allocation that gave life to this memory region.
    pub allocation_base: u64,
    /// The page protection used at allocation time.
    pub allocation_protect: u32,
    /// The state of the memory region. See [State](https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-memory_basic_information).
    pub state: u32,
    /// The page protection currently applied to the memory region.
    pub protect: u32,
    /// The type of memory region. See [Type](https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-memory_basic_information).
    pub type_: u32,
    /// The [`MemBlock`]'s data.
    pub data: &'a [u8],
}

impl<'a> MemBlock<'a> {
    /// Is the memory region readable?
    pub fn is_readable(&self) -> bool {
        (self.protect & READABLE) != 0
    }

    /// Is the memory region writable?
    pub fn is_writable(&self) -> bool {
        (self.protect & WRITABLE) != 0
    }

    /// Is the memory region executable?
    pub fn is_executable(&self) -> bool {
        (self.protect & EXECUTABLE) != 0
    }

    /// Stringify the memory region state.
    pub fn state_as_str(&self) -> &str {
        match self.state {
            0x10_00 => "MEM_COMMIT",
            0x20_00 => "MEM_RESERVE",
            0x1_00_00 => "MEM_FREE",
            _ => "UNKNOWN",
        }
    }

    /// Stringify the memory region type.
    pub fn type_as_str(&self) -> &str {
        if self.state == 0x1_00_00 {
            return "";
        }

        match self.type_ {
            0x2_00_00 => "MEM_PRIVATE",
            0x4_00_00 => "MEM_MAPPED",
            0x1_00_00_00 => "MEM_IMAGE",
            _ => "UNKNOWN",
        }
    }

    /// Stringify the memory region protection.
    pub fn protect_as_str(&self) -> String {
        if self.protect == 0 {
            return "".into();
        }

        // Those bits are the only ones that can be combined with the page
        // protections from below. So strip those first off `protect`.
        let bits = collections::HashMap::from([
            (PAGE_GUARD, "PAGE_GUARD"),
            (PAGE_NOCACHE, "PAGE_NOCACHE"),
            (PAGE_WRITECOMBINE, "PAGE_WRITECOMBINE"),
        ]);

        // This is where the parts of the stringified mask are stored in.
        let mut parts = vec::Vec::new();
        let mut protect = self.protect;

        // Walk through the bits to check if turned on.
        for (mask, str) in bits.iter() {
            // If the current bit isn't set, skip.
            if (protect & mask) == 0 {
                continue;
            }

            // If it is set, strip it off from `protect` and push its
            // stringified value in the vector.
            protect &= !mask;
            parts.push(*str);
        }

        // Now we can handle the 'normal' page properties.
        parts.push(match protect {
            PAGE_NOACCESS => "PAGE_NOACCESS",
            PAGE_READONLY => "PAGE_READONLY",
            PAGE_READWRITE => "PAGE_READWRITE",
            PAGE_WRITECOPY => "PAGE_WRITECOPY",
            PAGE_EXECUTE => "PAGE_EXECUTE",
            PAGE_EXECUTE_READ => "PAGE_EXECUTE_READ",
            PAGE_EXECUTE_READWRITE => "PAGE_EXECUTE_READWRITE",
            PAGE_EXECUTE_WRITECOPY => "PAGE_EXECUTE_WRITECOPY",
            _ => "UNKNOWN",
        });

        parts.join(" | ")
    }

    /// Get a slice over the [`MemBlock`]'s data from its absolute address.
    ///
    /// If the dump had a memory block of size 4 bytes starting at address 0xdead
    /// then calling `data_from(0xdead+1)` returns a slice over the last 3 bytes
    /// of the memory block. This is useful when you don't need to reason about
    /// offsets.
    pub fn data_from(&self, addr: u64) -> Option<&[u8]> {
        // If the memory block is empty return `None`. Also bail if this
        // `MemBlock` doesn't contain the address.
        if self.data.is_empty() || !self.range.contains(&addr) {
            return None;
        }

        // `addr` is contained in the range, so this is safe.
        let offset = addr - self.range.start;

        // Return the slice to the user.
        Some(&self.data[offset.try_into().unwrap()..])
    }

    /// Get the address of where this [`MemBlock`] was at in memory.
    pub fn start_addr(&self) -> u64 {
        self.range.start
    }

    /// Get the end address of where this [`MemBlock`] was at in memory.
    ///
    /// Note that the underlying range is not inclusive, so this address is
    /// pointing right after the last byte's address.
    pub fn end_addr(&self) -> u64 {
        self.range.end
    }

    /// Get the size of the [`MemBlock`].
    ///
    /// Note that a region of memory can exists without having any `data`
    /// associated with it. This method returns the range len, not `data`'s len.
    ///
    /// An example is a memory region mapped as `PAGE_NOACCESS`; it exists in
    /// the address space but has no content.
    pub fn len(&self) -> u64 {
        self.range.end - self.range.start
    }
}

/// Convert a [`MemoryInfo`] into a [`MemBlock`].
impl<'a> From<MemoryInfo> for MemBlock<'a> {
    fn from(value: MemoryInfo) -> Self {
        Self {
            range: value.base_address..(value.base_address + value.region_size),
            allocation_base: value.allocation_base,
            allocation_protect: value.allocation_protect,
            state: value.state,
            protect: value.protect,
            type_: value.type_,
            ..Default::default()
        }
    }
}

/// Map a base address to a [`MemBlock`].
pub type MemBlocks<'a> = collections::BTreeMap<u64, MemBlock<'a>>;

/// Map a thread id to a [`Thread`].
pub type Threads<'a> = collections::BTreeMap<u32, Thread<'a>>;

/// Map a base address to a [`Module`].
pub type Modules<'a> = collections::BTreeMap<u64, Module<'a>>;

/// Architectures supported by the library.
#[derive(Debug, Clone, Copy)]
pub enum Arch {
    /// Intel x86.
    X86,
    /// Intel x64.
    X64,
}

/// This stores  useful information fished out of of Windows minidump file:
/// thread contexts and memory blocks.
#[derive(Debug)]
pub struct UserDumpParser<'a> {
    /// The thread id of the foreground thread.
    pub foreground_tid: Option<u32>,
    /// The architecture of the dumped process.
    arch: Arch,
    /// A map of [`MemBlock`]s.
    mem_blocks: MemBlocks<'a>,
    /// A map of [`Module`].
    modules: Modules<'a>,
    /// A map of [`Thread`].
    threads: Threads<'a>,
    /// This is where we hold the backing data. Either it is a memory mapped
    /// file, or a slice that needs to live as long as this.
    _mapped_file: MappedFile<'a>,
}

impl<'a> UserDumpParser<'a> {
    /// Create an instance from a filepath. This memory maps the file and parses it.
    pub fn new<S: AsRef<path::Path>>(path: S) -> io::Result<UserDumpParser<'a>> {
        let mapped_file = MappedFile::new(path)?;
        Self::with_file(mapped_file)
    }

    /// Create an instance from something that dereference to a slice of bytes.
    pub fn with_slice(
        slice: &'a impl std::ops::Deref<Target = [u8]>,
    ) -> io::Result<UserDumpParser<'a>> {
        Self::with_file(MappedFile::from(slice.deref()))
    }

    /// Is the architeture X64?
    pub fn is_arch_x64(&self) -> bool {
        matches!(self.arch, Arch::X64)
    }

    /// Is the architecture X86?
    pub fn is_arch_x86(&self) -> bool {
        matches!(self.arch, Arch::X86)
    }

    /// Get a reference to the base address -> [`Module`] map.
    pub fn modules(&self) -> &Modules {
        &self.modules
    }

    /// Find a [`Module`] that includes `address` in its range.
    pub fn get_module(&self, address: u64) -> Option<&Module> {
        self.modules
            .values()
            .find(|module| module.range.contains(&address))
    }

    /// Get a reference to the TID -> [`Thread`] map.
    pub fn threads(&self) -> &Threads {
        &self.threads
    }

    /// Find a [`Thread`] with a specific TID.
    pub fn get_thread(&self, id: u32) -> Option<&Thread> {
        self.threads.values().find(|thread| thread.id == id)
    }

    /// Get a reference to the base address -> [`MemBlock`] map.
    pub fn mem_blocks(&self) -> &MemBlocks {
        &self.mem_blocks
    }

    /// Find a [`MemBlock`] that includes `address` in its range.
    pub fn get_mem_block(&self, address: u64) -> Option<&MemBlock> {
        self.mem_blocks
            .values()
            .find(|block| block.range.contains(&address))
    }

    /// Utility to get a slice from a [`LocationDescriptor32`] safely.
    fn slice_from_location_descriptor(
        reader: &Cursor,
        location: LocationDescriptor32,
    ) -> io::Result<&'a [u8]> {
        // Grab the offset and the wanted len.
        let offset = location.rva.try_into().unwrap();
        let len = location.data_size.try_into().unwrap();

        // Grab a reference on the underlying slice.
        let slice_ref = reader.get_ref();

        // Split the slice in two. We only care about the tail.
        let (_, tail) = slice_ref.split_at(offset);

        // Make sure the tail slice is big enough.
        if tail.len() < len {
            return Err(io::Error::new(
                io::ErrorKind::UnexpectedEof,
                "not enough data for slicing",
            ));
        }

        // Make sure we hold `from_raw_parts`'s contract.
        if len > isize::MAX.try_into().unwrap() {
            panic!("len > isize::MAX");
        }

        // Build the slice!
        Ok(unsafe { slice::from_raw_parts(tail.as_ptr(), len) })
    }

    /// Parse the system info stream to know which architecture is used.
    fn parse_system_info(cursor: &mut Cursor) -> io::Result<Arch> {
        // Read the stream info.
        let system_info = read_struct::<SystemInfoStream>(cursor)?;

        // Build the value of the enum safely.
        Ok(match system_info.processor_arch {
            ARCH_X86 => Arch::X86,
            ARCH_X64 => Arch::X64,
            _ => panic!("Unsupported architecture {:x}", system_info.processor_arch),
        })
    }

    /// Parse the exception stream to know figure out if there's a foreground
    /// TID.
    fn parse_exception(cursor: &mut Cursor) -> io::Result<u32> {
        // Read the exception stream.
        let exception = read_struct::<ExceptionStream>(cursor)?;

        // Return the TID.
        Ok(exception.thread_id)
    }

    /// Parse the memory info list stream to build the [`MemBlocks`] map.
    fn parse_mem_info_list(cursor: &mut Cursor) -> io::Result<MemBlocks<'a>> {
        // Create storage for the memory blocks.
        let mut mem_blocks = MemBlocks::new();

        // Read the memory info list stream.
        let mem_info_list = read_struct::<MemoryInfoListStream>(cursor)?;

        // Ensure that each entry is at least as big as what we expected.
        let mem_info_size = mem::size_of::<MemoryInfo>() as u32;
        let size_of_entry = mem_info_list.size_of_entry;
        if size_of_entry < mem_info_size {
            return Err(io::Error::new(
                io::ErrorKind::InvalidData,
                format!(
                    "MemoryInfo's size ({}) doesn't match the dump ({})",
                    mem_info_size, mem_info_list.size_of_entry
                ),
            ));
        }

        // Iterate through every entries.
        for _ in 0..mem_info_list.number_of_entries {
            // Read the memory info structure.
            let mem_info = peek_struct::<MemoryInfo>(cursor)?;

            // The key in the map is the base address.
            let key = mem_info.base_address;

            // If we already inserted this address, there's something wrong so
            // bail.
            let previous_val = mem_blocks.insert(key, mem_info.into());
            if previous_val.is_some() {
                return Err(io::Error::new(
                    io::ErrorKind::InvalidData,
                    format!("Address {} already in the mem map", key),
                ));
            }

            // Move on to the next entry.
            cursor.seek(io::SeekFrom::Current(size_of_entry.into()))?;
        }

        // We're done.
        Ok(mem_blocks)
    }

    /// Parse the memory64 list stream to associate data to the MemBlock we
    /// parsed from the memory info list stream. That's why we parse the memory
    /// info list stream first.
    fn parse_mem64_list(cursor: &mut Cursor, mem_blocks: &mut MemBlocks<'a>) -> io::Result<()> {
        // Read the memory64 list stream.
        let mem_list = read_struct::<Memory64ListStream>(cursor)?;

        // Grab the starting offset.
        let mut data_offset = mem_list.base_rva;

        // Iterate through every entries.
        for _ in 0..mem_list.number_of_memory_ranges {
            // Read a descriptor.
            let descriptor = read_struct::<MemoryDescriptor64>(cursor)?;

            // Get a reference to the associated MemBlock off `mem_blocks`.
            let entry = mem_blocks
                .get_mut(&descriptor.start_of_memory_range)
                .ok_or(io::Error::new(
                    io::ErrorKind::InvalidData,
                    format!(
                        "Address {} in Memory64ListStream but not in MemoryInfoListStream",
                        descriptor.start_of_memory_range
                    ),
                ))?;

            // Read the slice of bytes and associate it to the MemBlock instance.
            entry.data = Self::slice_from_location_descriptor(
                cursor,
                LocationDescriptor32 {
                    data_size: data_offset.try_into().unwrap(),
                    rva: descriptor.data_size.try_into().unwrap(),
                },
            )?;

            // Bump the offset by the size of this region to find where the next
            // data slice is at.
            data_offset = data_offset.checked_add(descriptor.data_size).unwrap();
        }

        // We're done!
        Ok(())
    }

    /// Parse the tread list and extract their contexts.
    fn parse_thread_list(cursor: &mut Cursor, arch: Arch) -> io::Result<Threads<'a>> {
        // Create the map of threads.
        let mut threads = Threads::new();

        // Read the thread list.
        let thread_list = read_struct::<ThreadList>(cursor)?;

        // Iterate through every entries.
        for _ in 0..thread_list.number_of_threads {
            // Read the entry.
            let thread = read_struct::<ThreadEntry>(cursor)?;

            // Save the current position.
            let pos = cursor.stream_position()?;

            // Grab the slice of its context.
            let thread_context_slice =
                Self::slice_from_location_descriptor(cursor, thread.thread_context)?;

            // Let's make sense of this slice based on what architectcure it is.
            let thread_context = match arch {
                // Read a ThreadContextX86 context if the slice is big enough.
                Arch::X86 => {
                    if thread_context_slice.len() < mem::size_of::<ThreadContextX86>() {
                        return Err(io::Error::new(
                            io::ErrorKind::InvalidData,
                            format!(
                                "The X86 thread context for TID {} has an unexpected size",
                                thread.thread_id
                            ),
                        ));
                    }

                    // Build a reference to a ThreadContextX86 at this address.
                    let ptr = thread_context_slice.as_ptr() as *const ThreadContextX86;
                    ThreadContext::X86(unsafe { &*ptr })
                }
                // Read a ThreadContextX86 context if the slice is big enough.
                Arch::X64 => {
                    if thread_context_slice.len() < mem::size_of::<ThreadContextX64>() {
                        return Err(io::Error::new(
                            io::ErrorKind::InvalidData,
                            format!(
                                "The X64 thread context for TID {} has an unexpected size",
                                thread.thread_id
                            ),
                        ));
                    }

                    // Build a reference to a ThreadContextX64 at this address.
                    let ptr = thread_context_slice.as_ptr() as *const ThreadContextX64;
                    ThreadContext::X64(unsafe { &*ptr })
                }
            };

            // The key in the map is the thread id.
            let key = thread.thread_id;

            // Create a Thread from its context and the descriptor.
            let thread = Thread::new(thread, thread_context);

            // If we've already encountered a thread with this id, then let's
            // bail.
            let previous_val = threads.insert(key, thread);
            if previous_val.is_some() {
                return Err(io::Error::new(
                    io::ErrorKind::InvalidData,
                    format!("Thread {} already in the map", key),
                ));
            }

            // Restore the position to get ready to parse the next entry.
            cursor.seek(io::SeekFrom::Start(pos))?;
        }

        Ok(threads)
    }

    /// Parse the module list.
    fn parse_module_list(cursor: &mut Cursor) -> io::Result<Modules<'a>> {
        // Build the map of modules.
        let mut modules = Modules::new();

        // Read the module list.
        let module_list = read_struct::<ModuleList>(cursor)?;

        // Iterate through every entries.
        for _ in 0..module_list.number_of_modules {
            // Read the module entry.
            let module = read_struct::<ModuleEntry>(cursor)?;

            // Save the position.
            let pos = cursor.stream_position()?;

            // Grab the CV / misc record slices.
            let cv_record = Self::slice_from_location_descriptor(cursor, module.cv_record)?;
            let misc_record = Self::slice_from_location_descriptor(cursor, module.misc_record)?;

            // Travel to where the module name is stored at.
            cursor.seek(io::SeekFrom::Start(module.module_name_rva.into()))?;

            // Read its length.
            let module_name_length = read_struct::<u32>(cursor)?.try_into().unwrap();

            // Allocate a backing buffer.
            let mut module_name = vec![0; module_name_length];

            // Read the module name off the slice into the buffer.
            cursor.read_exact(module_name.as_mut_slice())?;

            // Convert the module name into a Rust string.
            let module_name = utf16_string_from_slice(&module_name).map_err(|e| {
                io::Error::new(
                    io::ErrorKind::InvalidData,
                    format!("Module name is incorrect utf8: {e}"),
                )
            })?;

            // Create a module from its descriptor / name / records.
            let module = Module::new(module, module_name, cv_record, misc_record);

            // If there's already a module at this address, something is wrong
            // so we bail.
            let previous_val = modules.insert(module.range.start, module);
            if let Some(previous_val) = previous_val {
                return Err(io::Error::new(
                    io::ErrorKind::InvalidData,
                    format!("Module {} already in the map", previous_val.path.display()),
                ));
            }

            // Restore the saved cursor.
            cursor.seek(io::SeekFrom::Start(pos))?;
        }

        // We're done!
        Ok(modules)
    }

    pub fn with_file(_mapped_file: MappedFile<'a>) -> io::Result<UserDumpParser<'a>> {
        // Grab a cursor to start parsing the bits.
        let mut cursor = _mapped_file.cursor();

        // Read the header.
        let hdr = read_struct::<Header>(&mut cursor)?;

        // If we don't see the expected signature, bail.
        if hdr.signature != EXPECTED_DUMP_SIGNATURE {
            return Err(io::Error::new(
                io::ErrorKind::InvalidData,
                format!("Header signature {:x} is unexpected", hdr.signature),
            ));
        }

        // Check if the flags make sense.
        if (hdr.flags & VALID_DUMP_FLAGS) != 0 {
            return Err(io::Error::new(
                io::ErrorKind::InvalidData,
                format!("Header signature {:x} is unexpected", hdr.signature),
            ));
        }

        // Move to the stream directory.
        cursor.seek(io::SeekFrom::Start(
            hdr.stream_directory_rva.try_into().unwrap(),
        ))?;

        // Create a map to store where directories are stored at.
        let mut directory_locations = collections::HashMap::new();

        // Iterate through every entries.
        for _ in 0..hdr.number_of_streams {
            // Read the directory..
            let directory = read_struct::<Directory>(&mut cursor)?;

            // ..if we hit the `STREAM_TYPE_UNUSED`, we'll stop there.
            if directory.stream_type == STREAM_TYPE_UNUSED {
                break;
            }

            // Keep track of this directory.
            directory_locations.insert(directory.stream_type, directory.location);
        }

        // Parsing directories in a certain orders make things easier, and below
        // is the order we want.
        let required = true;
        let not_required = false;
        let directory_parsing_order = [
            // We need the architecture to decode threads.
            (STREAM_TYPE_SYSTEM_INFO, required),
            (STREAM_TYPE_EXCEPTION, not_required),
            // We parse this stream to build MemBlock w/o any data.
            (STREAM_TYPE_MEMORY_INFO_LIST, required),
            // We associate the data when parsing that stream.
            (STREAM_TYPE_MEMORY64_LIST, required),
            (STREAM_TYPE_THREAD_LIST, not_required),
            (STREAM_TYPE_MODULE_LIST, not_required),
        ];

        // Declare a bunch of state.
        let mut arch = None;
        let mut foreground_tid = None;
        let mut mem_blocks = MemBlocks::new();
        let mut modules = Modules::new();
        let mut threads = Threads::new();

        // Iterate through the directories in order.
        for (directory_type, required) in directory_parsing_order {
            // Check if we've encountered this stream directory
            let directory_location = directory_locations.get(&directory_type);

            // If we haven't, and that this directory is required, we bail.
            // Otherwise we just go to the next.
            let Some(directory_location) = directory_location else {
                if required {
                    return Err(io::Error::new(
                        io::ErrorKind::InvalidData,
                        format!("The directory {directory_type} is required but not present")
                    ));
                }

                continue;
            };

            // Move to where the stream is at.
            cursor.seek(io::SeekFrom::Start(directory_location.rva.into()))?;

            // Parse the streams we support.
            match directory_type {
                STREAM_TYPE_SYSTEM_INFO => arch = Some(Self::parse_system_info(&mut cursor)?),
                STREAM_TYPE_EXCEPTION => foreground_tid = Some(Self::parse_exception(&mut cursor)?),
                STREAM_TYPE_MEMORY_INFO_LIST => {
                    mem_blocks = Self::parse_mem_info_list(&mut cursor)?
                }
                STREAM_TYPE_MEMORY64_LIST => Self::parse_mem64_list(&mut cursor, &mut mem_blocks)?,
                STREAM_TYPE_THREAD_LIST => {
                    threads = Self::parse_thread_list(&mut cursor, arch.unwrap())?
                }
                STREAM_TYPE_MODULE_LIST => modules = Self::parse_module_list(&mut cursor)?,
                _ => unreachable!("Only parsing stream types we know about"),
            };
        }

        // The system info stream is required to be parsed so we know we have a
        // value in arch.
        let arch = arch.unwrap();

        // Phew, we have everything needed to build an instance!
        Ok(UserDumpParser {
            _mapped_file,
            arch,
            foreground_tid,
            mem_blocks,
            modules,
            threads,
        })
    }
}

/// Peek for a `T` from the cursor.
fn peek_struct<T>(cursor: &mut Cursor) -> io::Result<T> {
    let mut s = mem::MaybeUninit::uninit();
    let size_of_s = mem::size_of_val(&s);
    let slice_over_s = unsafe { slice::from_raw_parts_mut(s.as_mut_ptr() as *mut u8, size_of_s) };

    let pos = cursor.position();
    cursor.read_exact(slice_over_s)?;
    cursor.seek(io::SeekFrom::Start(pos))?;

    Ok(unsafe { s.assume_init() })
}

/// Read a `T` from the cursor.
fn read_struct<T>(cursor: &mut Cursor) -> io::Result<T> {
    let s = peek_struct(cursor)?;
    let size_of_s = mem::size_of_val(&s);

    cursor.seek(io::SeekFrom::Current(size_of_s.try_into().unwrap()))?;

    Ok(s)
}

/// Convert a slice of byte into an UTF16 Rust string.
fn utf16_string_from_slice(slice: &[u8]) -> io::Result<String> {
    // Every code point is 2 bytes, so we expect the length to be a multiple of
    // 2.
    if (slice.len() % 2) != 0 {
        return Err(io::Error::new(
            io::ErrorKind::InvalidData,
            "Slice length needs to be % 2",
        ));
    }

    // Iterate over chunks of 2 bytes to yield u16's.
    let iter = slice.chunks(2).map(|c| u16::from_le_bytes([c[0], c[1]]));

    // Decode the u16's into a String. If one of the u16 can't be decoded into a
    // valid code point, then it fails. Otherwise they all get collected into a
    // String.
    char::decode_utf16(iter)
        .collect::<Result<_, _>>()
        .or(Err(io::Error::new(
            io::ErrorKind::InvalidData,
            "Module name is not UTF16",
        )))
}

#[cfg(test)]
mod tests {
    use crate::UserDumpParser;
    use core::fmt::Debug;

    #[test]
    fn assert_traits() {
        fn assert_traits_<T: Send + Sync + Debug>() {}
        assert_traits_::<UserDumpParser>();
    }
}