Struct ublox_cellular::sockets::udp::Ipv4Addr[][src]

pub struct Ipv4Addr { /* fields omitted */ }
Expand description

An IPv4 address.

IPv4 addresses are defined as 32-bit integers in IETF RFC 791. They are usually represented as four octets.

See IpAddr for a type encompassing both IPv4 and IPv6 addresses.

Textual representation

Ipv4Addr provides a FromStr implementation. The four octets are in decimal notation, divided by . (this is called “dot-decimal notation”).

Examples

use no_std_net::Ipv4Addr;

let localhost = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!("127.0.0.1".parse(), Ok(localhost));
assert_eq!(localhost.is_loopback(), true);

Implementations

Creates a new IPv4 address from four eight-bit octets.

The result will represent the IP address a.b.c.d.

Examples

use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::new(127, 0, 0, 1);

Creates a new IPv4 address with the address pointing to localhost: 127.0.0.1.

Examples

use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::localhost();
assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));

Creates a new IPv4 address representing an unspecified address: 0.0.0.0

Examples

use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::unspecified();
assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));

Returns the four eight-bit integers that make up this address.

Examples

use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!(addr.octets(), [127, 0, 0, 1]);

Returns true for the special ‘unspecified’ address (0.0.0.0).

This property is defined in UNIX Network Programming, Second Edition, W. Richard Stevens, p. 891; see also ip7.

Examples

use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);

Returns true if this is a loopback address (127.0.0.0/8).

This property is defined by IETF RFC 1122.

Examples

use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);

Returns true if this is a private address.

The private address ranges are defined in IETF RFC 1918 and include:

  • 10.0.0.0/8
  • 172.16.0.0/12
  • 192.168.0.0/16

Examples

use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);

Returns true if the address is link-local (169.254.0.0/16).

This property is defined by IETF RFC 3927.

Examples

use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);

Returns true if the address appears to be globally routable. See iana-ipv4-special-registry.

The following return false:

  • private address (10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16)
  • the loopback address (127.0.0.0/8)
  • the link-local address (169.254.0.0/16)
  • the broadcast address (255.255.255.255/32)
  • test addresses used for documentation (192.0.2.0/24, 198.51.100.0/24 and 203.0.113.0/24)
  • the unspecified address (0.0.0.0)

Examples

use no_std_net::Ipv4Addr;

fn main() {
    assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
    assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
    assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
    assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false);
    assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
}

Returns true if this is a multicast address (224.0.0.0/4).

Multicast addresses have a most significant octet between 224 and 239, and is defined by IETF RFC 5771.

Examples

use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);

Returns true if this is a broadcast address (255.255.255.255).

A broadcast address has all octets set to 255 as defined in IETF RFC 919.

Examples

use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);

Returns true if this address is in a range designated for documentation.

This is defined in IETF RFC 5737:

  • 192.0.2.0/24 (TEST-NET-1)
  • 198.51.100.0/24 (TEST-NET-2)
  • 203.0.113.0/24 (TEST-NET-3)

Examples

use no_std_net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);

Converts this address to an IPv4-compatible IPv6 address.

a.b.c.d becomes ::a.b.c.d

Examples

use no_std_net::{Ipv4Addr, Ipv6Addr};

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
           Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 767));

Converts this address to an IPv4-mapped IPv6 address.

a.b.c.d becomes ::ffff:a.b.c.d

Examples

use no_std_net::{Ipv4Addr, Ipv6Addr};

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
           Ipv6Addr::new(0, 0, 0, 0, 0, 65535, 49152, 767));

Trait Implementations

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Deserialize this value from the given Serde deserializer. Read more

Formats the value using the given formatter. Read more

Creates an Ipv4Addr from a four element byte array.

Examples

use no_std_net::Ipv4Addr;

let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);

Performs the conversion.

The associated error which can be returned from parsing.

Parses a string s to return a value of this type. Read more

Feeds this value into the given Hasher. Read more

Feeds a slice of this type into the given Hasher. Read more

This method returns an Ordering between self and other. Read more

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

Restrict a value to a certain interval. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Serialize this value into the given Serde serializer. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Performs the conversion.

Performs the conversion.

Should always be Self

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.