1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
//! Mathematical formulas.
#[macro_use]
mod ctx;
mod accent;
mod align;
mod attach;
mod cancel;
#[path = "class.rs"]
mod class_;
mod equation;
mod frac;
mod fragment;
mod lr;
mod matrix;
mod op;
mod root;
mod row;
mod spacing;
mod stretch;
mod style;
mod underover;
pub use self::accent::*;
pub use self::align::*;
pub use self::attach::*;
pub use self::cancel::*;
pub use self::class_::*;
pub use self::equation::*;
pub use self::frac::*;
pub use self::lr::*;
pub use self::matrix::*;
pub use self::op::*;
pub use self::root::*;
pub use self::style::*;
pub use self::underover::*;
use self::ctx::*;
use self::fragment::*;
use self::row::*;
use self::spacing::*;
use crate::diag::SourceResult;
use crate::foundations::SequenceElem;
use crate::foundations::StyledElem;
use crate::foundations::{
category, Category, Content, Module, Resolve, Scope, StyleChain,
};
use crate::layout::{BoxElem, HElem, Spacing};
use crate::realize::{process, BehavedBuilder};
use crate::text::{LinebreakElem, SpaceElem, TextElem};
/// Typst has special [syntax]($syntax/#math) and library functions to typeset
/// mathematical formulas. Math formulas can be displayed inline with text or as
/// separate blocks. They will be typeset into their own block if they start and
/// end with at least one space (e.g. `[$ x^2 $]`).
///
/// # Variables
/// In math, single letters are always displayed as is. Multiple letters,
/// however, are interpreted as variables and functions. To display multiple
/// letters verbatim, you can place them into quotes and to access single letter
/// variables, you can use the [hash syntax]($scripting/#expressions).
///
/// ```example
/// $ A = pi r^2 $
/// $ "area" = pi dot "radius"^2 $
/// $ cal(A) :=
/// { x in RR | x "is natural" } $
/// #let x = 5
/// $ #x < 17 $
/// ```
///
/// # Symbols
/// Math mode makes a wide selection of [symbols]($category/symbols/sym) like
/// `pi`, `dot`, or `RR` available. Many mathematical symbols are available in
/// different variants. You can select between different variants by applying
/// [modifiers]($symbol) to the symbol. Typst further recognizes a number of
/// shorthand sequences like `=>` that approximate a symbol. When such a
/// shorthand exists, the symbol's documentation lists it.
///
/// ```example
/// $ x < y => x gt.eq.not y $
/// ```
///
/// # Line Breaks
/// Formulas can also contain line breaks. Each line can contain one or multiple
/// _alignment points_ (`&`) which are then aligned.
///
/// ```example
/// $ sum_(k=0)^n k
/// &= 1 + ... + n \
/// &= (n(n+1)) / 2 $
/// ```
///
/// # Function calls
/// Math mode supports special function calls without the hash prefix. In these
/// "math calls", the argument list works a little differently than in code:
///
/// - Within them, Typst is still in "math mode". Thus, you can write math
/// directly into them, but need to use hash syntax to pass code expressions
/// (except for strings, which are available in the math syntax).
/// - They support positional and named arguments, but don't support trailing
/// content blocks and argument spreading.
/// - They provide additional syntax for 2-dimensional argument lists. The
/// semicolon (`;`) merges preceding arguments separated by commas into an
/// array argument.
///
/// ```example
/// $ frac(a^2, 2) $
/// $ vec(1, 2, delim: "[") $
/// $ mat(1, 2; 3, 4) $
/// $ lim_x =
/// op("lim", limits: #true)_x $
/// ```
///
/// To write a verbatim comma or semicolon in a math call, escape it with a
/// backslash. The colon on the other hand is only recognized in a special way
/// if directly preceded by an identifier, so to display it verbatim in those
/// cases, you can just insert a space before it.
///
/// Functions calls preceded by a hash are normal code function calls and not
/// affected by these rules.
///
/// # Alignment
/// When equations include multiple _alignment points_ (`&`), this creates
/// blocks of alternatingly right- and left-aligned columns. In the example
/// below, the expression `(3x + y) / 7` is right-aligned and `= 9` is
/// left-aligned. The word "given" is also left-aligned because `&&` creates two
/// alignment points in a row, alternating the alignment twice. `& &` and `&&`
/// behave exactly the same way. Meanwhile, "multiply by 7" is right-aligned
/// because just one `&` precedes it. Each alignment point simply alternates
/// between right-aligned/left-aligned.
///
/// ```example
/// $ (3x + y) / 7 &= 9 && "given" \
/// 3x + y &= 63 & "multiply by 7" \
/// 3x &= 63 - y && "subtract y" \
/// x &= 21 - y/3 & "divide by 3" $
/// ```
///
/// # Math fonts
/// You can set the math font by with a [show-set rule]($styling/#show-rules) as
/// demonstrated below. Note that only special OpenType math fonts are suitable
/// for typesetting maths.
///
/// ```example
/// #show math.equation: set text(font: "Fira Math")
/// $ sum_(i in NN) 1 + i $
/// ```
///
/// # Math module
/// All math functions are part of the `math` [module]($scripting/#modules),
/// which is available by default in equations. Outside of equations, they can
/// be accessed with the `math.` prefix.
#[category]
pub static MATH: Category;
/// Create a module with all math definitions.
pub fn module() -> Module {
let mut math = Scope::deduplicating();
math.category(MATH);
math.define_elem::<EquationElem>();
math.define_elem::<TextElem>();
math.define_elem::<LrElem>();
math.define_elem::<MidElem>();
math.define_elem::<AttachElem>();
math.define_elem::<ScriptsElem>();
math.define_elem::<LimitsElem>();
math.define_elem::<AccentElem>();
math.define_elem::<UnderlineElem>();
math.define_elem::<OverlineElem>();
math.define_elem::<UnderbraceElem>();
math.define_elem::<OverbraceElem>();
math.define_elem::<UnderbracketElem>();
math.define_elem::<OverbracketElem>();
math.define_elem::<CancelElem>();
math.define_elem::<FracElem>();
math.define_elem::<BinomElem>();
math.define_elem::<VecElem>();
math.define_elem::<MatElem>();
math.define_elem::<CasesElem>();
math.define_elem::<RootElem>();
math.define_elem::<ClassElem>();
math.define_elem::<OpElem>();
math.define_elem::<PrimesElem>();
math.define_func::<abs>();
math.define_func::<norm>();
math.define_func::<floor>();
math.define_func::<ceil>();
math.define_func::<round>();
math.define_func::<sqrt>();
math.define_func::<upright>();
math.define_func::<bold>();
math.define_func::<italic>();
math.define_func::<serif>();
math.define_func::<sans>();
math.define_func::<cal>();
math.define_func::<frak>();
math.define_func::<mono>();
math.define_func::<bb>();
math.define_func::<display>();
math.define_func::<inline>();
math.define_func::<script>();
math.define_func::<sscript>();
// Text operators, spacings, and symbols.
op::define(&mut math);
spacing::define(&mut math);
for (name, symbol) in crate::symbols::SYM {
math.define(*name, symbol.clone());
}
Module::new("math", math)
}
/// Layout for math elements.
pub trait LayoutMath {
/// Layout the element, producing fragment in the context.
fn layout_math(&self, ctx: &mut MathContext, styles: StyleChain) -> SourceResult<()>;
}
impl LayoutMath for Content {
#[typst_macros::time(name = "math", span = self.span())]
fn layout_math(&self, ctx: &mut MathContext, styles: StyleChain) -> SourceResult<()> {
// Directly layout the body of nested equations instead of handling it
// like a normal equation so that things like this work:
// ```
// #let my = $pi$
// $ my r^2 $
// ```
if let Some(elem) = self.to_packed::<EquationElem>() {
return elem.layout_math(ctx, styles);
}
if let Some(realized) = process(ctx.engine, self, styles)? {
return realized.layout_math(ctx, styles);
}
if self.is::<SequenceElem>() {
let mut bb = BehavedBuilder::new();
self.sequence_recursive_for_each(&mut |child: &Content| {
bb.push(child, StyleChain::default());
});
for child in bb.finish::<Content>().0 {
child.layout_math(ctx, styles)?;
}
return Ok(());
}
if let Some(styled) = self.to_packed::<StyledElem>() {
let outer = styles;
let styles = outer.chain(&styled.styles);
if TextElem::font_in(styles) != TextElem::font_in(outer) {
let frame = ctx.layout_content(&styled.child, styles)?;
ctx.push(FrameFragment::new(ctx, styles, frame).with_spaced(true));
return Ok(());
}
styled.child.layout_math(ctx, styles)?;
return Ok(());
}
if self.is::<SpaceElem>() {
let font_size = scaled_font_size(ctx, styles);
ctx.push(MathFragment::Space(ctx.space_width.at(font_size)));
return Ok(());
}
if self.is::<LinebreakElem>() {
ctx.push(MathFragment::Linebreak);
return Ok(());
}
if let Some(elem) = self.to_packed::<HElem>() {
if let Spacing::Rel(rel) = elem.amount() {
if rel.rel.is_zero() {
ctx.push(SpacingFragment {
width: rel.abs.resolve(styles),
weak: elem.weak(styles),
});
}
}
return Ok(());
}
if let Some(elem) = self.to_packed::<TextElem>() {
let fragment = ctx.layout_text(elem, styles)?;
ctx.push(fragment);
return Ok(());
}
if let Some(boxed) = self.to_packed::<BoxElem>() {
let frame = ctx.layout_box(boxed, styles)?;
ctx.push(FrameFragment::new(ctx, styles, frame).with_spaced(true));
return Ok(());
}
if let Some(elem) = self.with::<dyn LayoutMath>() {
return elem.layout_math(ctx, styles);
}
let mut frame = ctx.layout_content(self, styles)?;
if !frame.has_baseline() {
let axis = scaled!(ctx, styles, axis_height);
frame.set_baseline(frame.height() / 2.0 + axis);
}
ctx.push(FrameFragment::new(ctx, styles, frame).with_spaced(true));
Ok(())
}
}