typst_syntax/
lexer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
use ecow::{eco_format, EcoString};
use unicode_ident::{is_xid_continue, is_xid_start};
use unicode_script::{Script, UnicodeScript};
use unicode_segmentation::UnicodeSegmentation;
use unscanny::Scanner;

use crate::{SyntaxError, SyntaxKind, SyntaxNode};

/// An iterator over a source code string which returns tokens.
#[derive(Clone)]
pub(super) struct Lexer<'s> {
    /// The scanner: contains the underlying string and location as a "cursor".
    s: Scanner<'s>,
    /// The mode the lexer is in. This determines which kinds of tokens it
    /// produces.
    mode: LexMode,
    /// Whether the last token contained a newline.
    newline: bool,
    /// An error for the last token.
    error: Option<SyntaxError>,
}

/// What kind of tokens to emit.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub(super) enum LexMode {
    /// Text and markup.
    Markup,
    /// Math atoms, operators, etc.
    Math,
    /// Keywords, literals and operators.
    Code,
}

impl<'s> Lexer<'s> {
    /// Create a new lexer with the given mode and a prefix to offset column
    /// calculations.
    pub fn new(text: &'s str, mode: LexMode) -> Self {
        Self {
            s: Scanner::new(text),
            mode,
            newline: false,
            error: None,
        }
    }

    /// Get the current lexing mode.
    pub fn mode(&self) -> LexMode {
        self.mode
    }

    /// Change the lexing mode.
    pub fn set_mode(&mut self, mode: LexMode) {
        self.mode = mode;
    }

    /// The index in the string at which the last token ends and next token
    /// will start.
    pub fn cursor(&self) -> usize {
        self.s.cursor()
    }

    /// Jump to the given index in the string.
    pub fn jump(&mut self, index: usize) {
        self.s.jump(index);
    }

    /// Whether the last token contained a newline.
    pub fn newline(&self) -> bool {
        self.newline
    }

    /// The number of characters until the most recent newline from an index.
    pub fn column(&self, index: usize) -> usize {
        let mut s = self.s; // Make a new temporary scanner (cheap).
        s.jump(index);
        s.before().chars().rev().take_while(|&c| !is_newline(c)).count()
    }
}

impl Lexer<'_> {
    /// Construct a full-positioned syntax error.
    fn error(&mut self, message: impl Into<EcoString>) -> SyntaxKind {
        self.error = Some(SyntaxError::new(message));
        SyntaxKind::Error
    }

    /// If the current node is an error, adds a hint.
    fn hint(&mut self, message: impl Into<EcoString>) {
        if let Some(error) = &mut self.error {
            error.hints.push(message.into());
        }
    }
}

/// Shared methods with all [`LexMode`].
impl Lexer<'_> {
    /// Return the next token in our text. Returns both the [`SyntaxNode`]
    /// and the raw [`SyntaxKind`] to make it more ergonomic to check the kind
    pub fn next(&mut self) -> (SyntaxKind, SyntaxNode) {
        debug_assert!(self.error.is_none());
        let start = self.s.cursor();

        self.newline = false;
        let kind = match self.s.eat() {
            Some(c) if is_space(c, self.mode) => self.whitespace(start, c),
            Some('#') if start == 0 && self.s.eat_if('!') => self.shebang(),
            Some('/') if self.s.eat_if('/') => self.line_comment(),
            Some('/') if self.s.eat_if('*') => self.block_comment(),
            Some('*') if self.s.eat_if('/') => {
                let kind = self.error("unexpected end of block comment");
                self.hint(
                    "consider escaping the `*` with a backslash or \
                     opening the block comment with `/*`",
                );
                kind
            }
            Some('`') if self.mode != LexMode::Math => return self.raw(),
            Some(c) => match self.mode {
                LexMode::Markup => self.markup(start, c),
                LexMode::Math => match self.math(start, c) {
                    (kind, None) => kind,
                    (kind, Some(node)) => return (kind, node),
                },
                LexMode::Code => self.code(start, c),
            },

            None => SyntaxKind::End,
        };

        let text = self.s.from(start);
        let node = match self.error.take() {
            Some(error) => SyntaxNode::error(error, text),
            None => SyntaxNode::leaf(kind, text),
        };
        (kind, node)
    }

    /// Eat whitespace characters greedily.
    fn whitespace(&mut self, start: usize, c: char) -> SyntaxKind {
        let more = self.s.eat_while(|c| is_space(c, self.mode));
        let newlines = match c {
            // Optimize eating a single space.
            ' ' if more.is_empty() => 0,
            _ => count_newlines(self.s.from(start)),
        };

        self.newline = newlines > 0;
        if self.mode == LexMode::Markup && newlines >= 2 {
            SyntaxKind::Parbreak
        } else {
            SyntaxKind::Space
        }
    }

    fn shebang(&mut self) -> SyntaxKind {
        self.s.eat_until(is_newline);
        SyntaxKind::Shebang
    }

    fn line_comment(&mut self) -> SyntaxKind {
        self.s.eat_until(is_newline);
        SyntaxKind::LineComment
    }

    fn block_comment(&mut self) -> SyntaxKind {
        let mut state = '_';
        let mut depth = 1;

        // Find the first `*/` that does not correspond to a nested `/*`.
        while let Some(c) = self.s.eat() {
            state = match (state, c) {
                ('*', '/') => {
                    depth -= 1;
                    if depth == 0 {
                        break;
                    }
                    '_'
                }
                ('/', '*') => {
                    depth += 1;
                    '_'
                }
                _ => c,
            }
        }

        SyntaxKind::BlockComment
    }
}

/// Markup.
impl Lexer<'_> {
    fn markup(&mut self, start: usize, c: char) -> SyntaxKind {
        match c {
            '\\' => self.backslash(),
            'h' if self.s.eat_if("ttp://") => self.link(),
            'h' if self.s.eat_if("ttps://") => self.link(),
            '<' if self.s.at(is_id_continue) => self.label(),
            '@' => self.ref_marker(),

            '.' if self.s.eat_if("..") => SyntaxKind::Shorthand,
            '-' if self.s.eat_if("--") => SyntaxKind::Shorthand,
            '-' if self.s.eat_if('-') => SyntaxKind::Shorthand,
            '-' if self.s.eat_if('?') => SyntaxKind::Shorthand,
            '-' if self.s.at(char::is_numeric) => SyntaxKind::Shorthand,
            '*' if !self.in_word() => SyntaxKind::Star,
            '_' if !self.in_word() => SyntaxKind::Underscore,

            '#' => SyntaxKind::Hash,
            '[' => SyntaxKind::LeftBracket,
            ']' => SyntaxKind::RightBracket,
            '\'' => SyntaxKind::SmartQuote,
            '"' => SyntaxKind::SmartQuote,
            '$' => SyntaxKind::Dollar,
            '~' => SyntaxKind::Shorthand,
            ':' => SyntaxKind::Colon,
            '=' => {
                self.s.eat_while('=');
                if self.space_or_end() {
                    SyntaxKind::HeadingMarker
                } else {
                    self.text()
                }
            }
            '-' if self.space_or_end() => SyntaxKind::ListMarker,
            '+' if self.space_or_end() => SyntaxKind::EnumMarker,
            '/' if self.space_or_end() => SyntaxKind::TermMarker,
            '0'..='9' => self.numbering(start),

            _ => self.text(),
        }
    }

    fn backslash(&mut self) -> SyntaxKind {
        if self.s.eat_if("u{") {
            let hex = self.s.eat_while(char::is_ascii_alphanumeric);
            if !self.s.eat_if('}') {
                return self.error("unclosed Unicode escape sequence");
            }

            if u32::from_str_radix(hex, 16)
                .ok()
                .and_then(std::char::from_u32)
                .is_none()
            {
                return self.error(eco_format!("invalid Unicode codepoint: {}", hex));
            }

            return SyntaxKind::Escape;
        }

        if self.s.done() || self.s.at(char::is_whitespace) {
            SyntaxKind::Linebreak
        } else {
            self.s.eat();
            SyntaxKind::Escape
        }
    }

    /// We parse entire raw segments in the lexer as a convenience to avoid
    /// going to and from the parser for each raw section. See comments in
    /// [`Self::blocky_raw`] and [`Self::inline_raw`] for specific details.
    fn raw(&mut self) -> (SyntaxKind, SyntaxNode) {
        let start = self.s.cursor() - 1;

        // Determine number of opening backticks.
        let mut backticks = 1;
        while self.s.eat_if('`') {
            backticks += 1;
        }

        // Special case for ``.
        if backticks == 2 {
            let nodes = vec![
                SyntaxNode::leaf(SyntaxKind::RawDelim, "`"),
                SyntaxNode::leaf(SyntaxKind::RawDelim, "`"),
            ];
            return (SyntaxKind::Raw, SyntaxNode::inner(SyntaxKind::Raw, nodes));
        }

        // Find end of raw text.
        let mut found = 0;
        while found < backticks {
            match self.s.eat() {
                Some('`') => found += 1,
                Some(_) => found = 0,
                None => {
                    let msg = SyntaxError::new("unclosed raw text");
                    let error = SyntaxNode::error(msg, self.s.from(start));
                    return (SyntaxKind::Error, error);
                }
            }
        }
        let end = self.s.cursor();

        let mut nodes = Vec::with_capacity(3); // Will have at least 3.

        // A closure for pushing a node onto our raw vector. Assumes the caller
        // will move the scanner to the next location at each step.
        let mut prev_start = start;
        let mut push_raw = |kind, s: &Scanner| {
            nodes.push(SyntaxNode::leaf(kind, s.from(prev_start)));
            prev_start = s.cursor();
        };

        // Opening delimiter.
        self.s.jump(start + backticks);
        push_raw(SyntaxKind::RawDelim, &self.s);

        if backticks >= 3 {
            self.blocky_raw(end - backticks, &mut push_raw);
        } else {
            self.inline_raw(end - backticks, &mut push_raw);
        }

        // Closing delimiter.
        self.s.jump(end);
        push_raw(SyntaxKind::RawDelim, &self.s);

        (SyntaxKind::Raw, SyntaxNode::inner(SyntaxKind::Raw, nodes))
    }

    /// Raw blocks parse a language tag, have smart behavior for trimming
    /// whitespace in the start/end lines, and trim common leading whitespace
    /// from all other lines as the "dedent". The exact behavior is described
    /// below.
    ///
    /// ### The initial line:
    /// - A valid Typst identifier immediately following the opening delimiter
    ///   is parsed as the language tag.
    /// - We check the rest of the line and if all characters are whitespace,
    ///   trim it. Otherwise we trim a single leading space if present.
    ///   - If more trimmed characters follow on future lines, they will be
    ///     merged into the same trimmed element.
    /// - If we didn't trim the entire line, the rest is kept as text.
    ///
    /// ### Inner lines:
    /// - We determine the "dedent" by iterating over the lines. The dedent is
    ///   the minimum number of leading whitespace characters (not bytes) before
    ///   each line that has any non-whitespace characters.
    ///   - The opening delimiter's line does not contribute to the dedent, but
    ///     the closing delimiter's line does (even if that line is entirely
    ///     whitespace up to the delimiter).
    /// - We then trim the newline and dedent characters of each line, and add a
    ///   (potentially empty) text element of all remaining characters.
    ///
    /// ### The final line:
    /// - If the last line is entirely whitespace, it is trimmed.
    /// - Otherwise its text is kept like an inner line. However, if the last
    ///   non-whitespace character of the final line is a backtick, then one
    ///   ascii space (if present) is trimmed from the end.
    fn blocky_raw<F>(&mut self, inner_end: usize, mut push_raw: F)
    where
        F: FnMut(SyntaxKind, &Scanner),
    {
        // Language tag.
        if self.s.eat_if(is_id_start) {
            self.s.eat_while(is_id_continue);
            push_raw(SyntaxKind::RawLang, &self.s);
        }

        // The rest of the function operates on the lines between the backticks.
        let mut lines = split_newlines(self.s.to(inner_end));

        // Determine dedent level.
        let dedent = lines
            .iter()
            .skip(1)
            .filter(|line| !line.chars().all(char::is_whitespace))
            // The line with the closing ``` is always taken into account
            .chain(lines.last())
            .map(|line| line.chars().take_while(|c| c.is_whitespace()).count())
            .min()
            .unwrap_or(0);

        // Trim whitespace from the last line. Will be added as a `RawTrimmed`
        // kind by the check for `self.s.cursor() != inner_end` below.
        if lines.last().is_some_and(|last| last.chars().all(char::is_whitespace)) {
            lines.pop();
        } else if let Some(last) = lines.last_mut() {
            // If last line ends in a backtick, try to trim a single space. This
            // check must happen before we add the first line since the last and
            // first lines might be the same.
            if last.trim_end().ends_with('`') {
                *last = last.strip_suffix(' ').unwrap_or(last);
            }
        }

        let mut lines = lines.into_iter();

        // Handle the first line: trim if all whitespace, or trim a single space
        // at the start. Note that the first line does not affect the dedent
        // value.
        if let Some(first_line) = lines.next() {
            if first_line.chars().all(char::is_whitespace) {
                self.s.advance(first_line.len());
                // This is the only spot we advance the scanner, but don't
                // immediately call `push_raw`. But the rest of the function
                // ensures we will always add this text to a `RawTrimmed` later.
                debug_assert!(self.s.cursor() != inner_end);
                // A proof by cases follows:
                // # First case: The loop runs
                // If the loop runs, there must be a newline following, so
                // `cursor != inner_end`. And if the loop runs, the first thing
                // it does is add a trimmed element.
                // # Second case: The final if-statement runs.
                // To _not_ reach the loop from here, we must have only one or
                // two lines:
                // 1. If one line, we cannot be here, because the first and last
                //    lines are the same, so this line will have been removed by
                //    the check for the last line being all whitespace.
                // 2. If two lines, the loop will run unless the last is fully
                //    whitespace, but if it is, it will have been popped, then
                //    the final if-statement will run because the text removed
                //    by the last line must include at least a newline, so
                //    `cursor != inner_end` here.
            } else {
                let line_end = self.s.cursor() + first_line.len();
                if self.s.eat_if(' ') {
                    // Trim a single space after the lang tag on the first line.
                    push_raw(SyntaxKind::RawTrimmed, &self.s);
                }
                // We know here that the rest of the line is non-empty.
                self.s.jump(line_end);
                push_raw(SyntaxKind::Text, &self.s);
            }
        }

        // Add lines.
        for line in lines {
            let offset: usize = line.chars().take(dedent).map(char::len_utf8).sum();
            self.s.eat_newline();
            self.s.advance(offset);
            push_raw(SyntaxKind::RawTrimmed, &self.s);
            self.s.advance(line.len() - offset);
            push_raw(SyntaxKind::Text, &self.s);
        }

        // Add final trimmed.
        if self.s.cursor() < inner_end {
            self.s.jump(inner_end);
            push_raw(SyntaxKind::RawTrimmed, &self.s);
        }
    }

    /// Inline raw text is split on lines with non-newlines as `Text` kinds and
    /// newlines as `RawTrimmed`. Inline raw text does not dedent the text, all
    /// non-newline whitespace is kept.
    fn inline_raw<F>(&mut self, inner_end: usize, mut push_raw: F)
    where
        F: FnMut(SyntaxKind, &Scanner),
    {
        while self.s.cursor() < inner_end {
            if self.s.at(is_newline) {
                push_raw(SyntaxKind::Text, &self.s);
                self.s.eat_newline();
                push_raw(SyntaxKind::RawTrimmed, &self.s);
                continue;
            }
            self.s.eat();
        }
        push_raw(SyntaxKind::Text, &self.s);
    }

    fn link(&mut self) -> SyntaxKind {
        let (link, balanced) = link_prefix(self.s.after());
        self.s.advance(link.len());

        if !balanced {
            return self.error(
                "automatic links cannot contain unbalanced brackets, \
                 use the `link` function instead",
            );
        }

        SyntaxKind::Link
    }

    fn numbering(&mut self, start: usize) -> SyntaxKind {
        self.s.eat_while(char::is_ascii_digit);

        let read = self.s.from(start);
        if self.s.eat_if('.') && self.space_or_end() && read.parse::<usize>().is_ok() {
            return SyntaxKind::EnumMarker;
        }

        self.text()
    }

    fn ref_marker(&mut self) -> SyntaxKind {
        self.s.eat_while(is_valid_in_label_literal);

        // Don't include the trailing characters likely to be part of text.
        while matches!(self.s.scout(-1), Some('.' | ':')) {
            self.s.uneat();
        }

        SyntaxKind::RefMarker
    }

    fn label(&mut self) -> SyntaxKind {
        let label = self.s.eat_while(is_valid_in_label_literal);
        if label.is_empty() {
            return self.error("label cannot be empty");
        }

        if !self.s.eat_if('>') {
            return self.error("unclosed label");
        }

        SyntaxKind::Label
    }

    fn text(&mut self) -> SyntaxKind {
        macro_rules! table {
            ($(|$c:literal)*) => {
                static TABLE: [bool; 128] = {
                    let mut t = [false; 128];
                    $(t[$c as usize] = true;)*
                    t
                };
            };
        }

        table! {
            | ' ' | '\t' | '\n' | '\x0b' | '\x0c' | '\r' | '\\' | '/'
            | '[' | ']' | '~' | '-' | '.' | '\'' | '"' | '*' | '_'
            | ':' | 'h' | '`' | '$' | '<' | '>' | '@' | '#'
        };

        loop {
            self.s.eat_until(|c: char| {
                TABLE.get(c as usize).copied().unwrap_or_else(|| c.is_whitespace())
            });

            // Continue with the same text node if the thing would become text
            // anyway.
            let mut s = self.s;
            match s.eat() {
                Some(' ') if s.at(char::is_alphanumeric) => {}
                Some('/') if !s.at(['/', '*']) => {}
                Some('-') if !s.at(['-', '?']) => {}
                Some('.') if !s.at("..") => {}
                Some('h') if !s.at("ttp://") && !s.at("ttps://") => {}
                Some('@') if !s.at(is_valid_in_label_literal) => {}
                _ => break,
            }

            self.s = s;
        }

        SyntaxKind::Text
    }

    fn in_word(&self) -> bool {
        let wordy = |c: Option<char>| {
            c.is_some_and(|c| {
                c.is_alphanumeric()
                    && !matches!(
                        c.script(),
                        Script::Han
                            | Script::Hiragana
                            | Script::Katakana
                            | Script::Hangul
                    )
            })
        };
        let prev = self.s.scout(-2);
        let next = self.s.peek();
        wordy(prev) && wordy(next)
    }

    fn space_or_end(&self) -> bool {
        self.s.done()
            || self.s.at(char::is_whitespace)
            || self.s.at("//")
            || self.s.at("/*")
    }
}

/// Math.
impl Lexer<'_> {
    fn math(&mut self, start: usize, c: char) -> (SyntaxKind, Option<SyntaxNode>) {
        let kind = match c {
            '\\' => self.backslash(),
            '"' => self.string(),

            '-' if self.s.eat_if(">>") => SyntaxKind::MathShorthand,
            '-' if self.s.eat_if('>') => SyntaxKind::MathShorthand,
            '-' if self.s.eat_if("->") => SyntaxKind::MathShorthand,
            ':' if self.s.eat_if('=') => SyntaxKind::MathShorthand,
            ':' if self.s.eat_if(":=") => SyntaxKind::MathShorthand,
            '!' if self.s.eat_if('=') => SyntaxKind::MathShorthand,
            '.' if self.s.eat_if("..") => SyntaxKind::MathShorthand,
            '[' if self.s.eat_if('|') => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if("==>") => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if("-->") => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if("--") => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if("-<") => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if("->") => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if("<-") => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if("<<") => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if("=>") => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if("==") => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if("~~") => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if('=') => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if('<') => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if('-') => SyntaxKind::MathShorthand,
            '<' if self.s.eat_if('~') => SyntaxKind::MathShorthand,
            '>' if self.s.eat_if("->") => SyntaxKind::MathShorthand,
            '>' if self.s.eat_if(">>") => SyntaxKind::MathShorthand,
            '=' if self.s.eat_if("=>") => SyntaxKind::MathShorthand,
            '=' if self.s.eat_if('>') => SyntaxKind::MathShorthand,
            '=' if self.s.eat_if(':') => SyntaxKind::MathShorthand,
            '>' if self.s.eat_if('=') => SyntaxKind::MathShorthand,
            '>' if self.s.eat_if('>') => SyntaxKind::MathShorthand,
            '|' if self.s.eat_if("->") => SyntaxKind::MathShorthand,
            '|' if self.s.eat_if("=>") => SyntaxKind::MathShorthand,
            '|' if self.s.eat_if(']') => SyntaxKind::MathShorthand,
            '|' if self.s.eat_if('|') => SyntaxKind::MathShorthand,
            '~' if self.s.eat_if("~>") => SyntaxKind::MathShorthand,
            '~' if self.s.eat_if('>') => SyntaxKind::MathShorthand,
            '*' | '-' | '~' => SyntaxKind::MathShorthand,

            '.' => SyntaxKind::Dot,
            ',' => SyntaxKind::Comma,
            ';' => SyntaxKind::Semicolon,
            ')' => SyntaxKind::RightParen,

            '#' => SyntaxKind::Hash,
            '_' => SyntaxKind::Underscore,
            '$' => SyntaxKind::Dollar,
            '/' => SyntaxKind::Slash,
            '^' => SyntaxKind::Hat,
            '\'' => SyntaxKind::Prime,
            '&' => SyntaxKind::MathAlignPoint,
            '√' | '∛' | '∜' => SyntaxKind::Root,

            // Identifiers.
            c if is_math_id_start(c) && self.s.at(is_math_id_continue) => {
                self.s.eat_while(is_math_id_continue);
                let (kind, node) = self.math_ident_or_field(start);
                return (kind, Some(node));
            }

            // Other math atoms.
            _ => self.math_text(start, c),
        };
        (kind, None)
    }

    /// Parse a single `MathIdent` or an entire `FieldAccess`.
    fn math_ident_or_field(&mut self, start: usize) -> (SyntaxKind, SyntaxNode) {
        let mut kind = SyntaxKind::MathIdent;
        let mut node = SyntaxNode::leaf(kind, self.s.from(start));
        while let Some(ident) = self.maybe_dot_ident() {
            kind = SyntaxKind::FieldAccess;
            let field_children = vec![
                node,
                SyntaxNode::leaf(SyntaxKind::Dot, '.'),
                SyntaxNode::leaf(SyntaxKind::Ident, ident),
            ];
            node = SyntaxNode::inner(kind, field_children);
        }
        (kind, node)
    }

    /// If at a dot and a math identifier, eat and return the identifier.
    fn maybe_dot_ident(&mut self) -> Option<&str> {
        if self.s.scout(1).is_some_and(is_math_id_start) && self.s.eat_if('.') {
            let ident_start = self.s.cursor();
            self.s.eat();
            self.s.eat_while(is_math_id_continue);
            Some(self.s.from(ident_start))
        } else {
            None
        }
    }

    fn math_text(&mut self, start: usize, c: char) -> SyntaxKind {
        // Keep numbers and grapheme clusters together.
        if c.is_numeric() {
            self.s.eat_while(char::is_numeric);
            let mut s = self.s;
            if s.eat_if('.') && !s.eat_while(char::is_numeric).is_empty() {
                self.s = s;
            }
            SyntaxKind::MathText
        } else {
            let len = self
                .s
                .get(start..self.s.string().len())
                .graphemes(true)
                .next()
                .map_or(0, str::len);
            self.s.jump(start + len);
            if len > c.len_utf8() {
                // Grapheme clusters are treated as normal text and stay grouped
                // This may need to change in the future.
                SyntaxKind::Text
            } else {
                SyntaxKind::MathText
            }
        }
    }

    /// Handle named arguments in math function call.
    pub fn maybe_math_named_arg(&mut self, start: usize) -> Option<SyntaxNode> {
        let cursor = self.s.cursor();
        self.s.jump(start);
        if self.s.eat_if(is_id_start) {
            self.s.eat_while(is_id_continue);
            // Check that a colon directly follows the identifier, and not the
            // `:=` or `::=` math shorthands.
            if self.s.at(':') && !self.s.at(":=") && !self.s.at("::=") {
                // Check that the identifier is not just `_`.
                let node = if self.s.from(start) != "_" {
                    SyntaxNode::leaf(SyntaxKind::Ident, self.s.from(start))
                } else {
                    let msg = SyntaxError::new("expected identifier, found underscore");
                    SyntaxNode::error(msg, self.s.from(start))
                };
                return Some(node);
            }
        }
        self.s.jump(cursor);
        None
    }

    /// Handle spread arguments in math function call.
    pub fn maybe_math_spread_arg(&mut self, start: usize) -> Option<SyntaxNode> {
        let cursor = self.s.cursor();
        self.s.jump(start);
        if self.s.eat_if("..") {
            // Check that neither a space nor a dot follows the spread syntax.
            // A dot would clash with the `...` math shorthand.
            if !self.space_or_end() && !self.s.at('.') {
                let node = SyntaxNode::leaf(SyntaxKind::Dots, self.s.from(start));
                return Some(node);
            }
        }
        self.s.jump(cursor);
        None
    }
}

/// Code.
impl Lexer<'_> {
    fn code(&mut self, start: usize, c: char) -> SyntaxKind {
        match c {
            '<' if self.s.at(is_id_continue) => self.label(),
            '0'..='9' => self.number(start, c),
            '.' if self.s.at(char::is_ascii_digit) => self.number(start, c),
            '"' => self.string(),

            '=' if self.s.eat_if('=') => SyntaxKind::EqEq,
            '!' if self.s.eat_if('=') => SyntaxKind::ExclEq,
            '<' if self.s.eat_if('=') => SyntaxKind::LtEq,
            '>' if self.s.eat_if('=') => SyntaxKind::GtEq,
            '+' if self.s.eat_if('=') => SyntaxKind::PlusEq,
            '-' | '\u{2212}' if self.s.eat_if('=') => SyntaxKind::HyphEq,
            '*' if self.s.eat_if('=') => SyntaxKind::StarEq,
            '/' if self.s.eat_if('=') => SyntaxKind::SlashEq,
            '.' if self.s.eat_if('.') => SyntaxKind::Dots,
            '=' if self.s.eat_if('>') => SyntaxKind::Arrow,

            '{' => SyntaxKind::LeftBrace,
            '}' => SyntaxKind::RightBrace,
            '[' => SyntaxKind::LeftBracket,
            ']' => SyntaxKind::RightBracket,
            '(' => SyntaxKind::LeftParen,
            ')' => SyntaxKind::RightParen,
            '$' => SyntaxKind::Dollar,
            ',' => SyntaxKind::Comma,
            ';' => SyntaxKind::Semicolon,
            ':' => SyntaxKind::Colon,
            '.' => SyntaxKind::Dot,
            '+' => SyntaxKind::Plus,
            '-' | '\u{2212}' => SyntaxKind::Minus,
            '*' => SyntaxKind::Star,
            '/' => SyntaxKind::Slash,
            '=' => SyntaxKind::Eq,
            '<' => SyntaxKind::Lt,
            '>' => SyntaxKind::Gt,

            c if is_id_start(c) => self.ident(start),

            c => self.error(eco_format!("the character `{c}` is not valid in code")),
        }
    }

    fn ident(&mut self, start: usize) -> SyntaxKind {
        self.s.eat_while(is_id_continue);
        let ident = self.s.from(start);

        let prev = self.s.get(0..start);
        if !prev.ends_with(['.', '@']) || prev.ends_with("..") {
            if let Some(keyword) = keyword(ident) {
                return keyword;
            }
        }

        if ident == "_" {
            SyntaxKind::Underscore
        } else {
            SyntaxKind::Ident
        }
    }

    fn number(&mut self, mut start: usize, c: char) -> SyntaxKind {
        // Handle alternative integer bases.
        let mut base = 10;
        if c == '0' {
            if self.s.eat_if('b') {
                base = 2;
            } else if self.s.eat_if('o') {
                base = 8;
            } else if self.s.eat_if('x') {
                base = 16;
            }
            if base != 10 {
                start = self.s.cursor();
            }
        }

        // Read the first part (integer or fractional depending on `first`).
        self.s.eat_while(if base == 16 {
            char::is_ascii_alphanumeric
        } else {
            char::is_ascii_digit
        });

        // Read the fractional part if not already done.
        // Make sure not to confuse a range for the decimal separator.
        if c != '.'
            && !self.s.at("..")
            && !self.s.scout(1).is_some_and(is_id_start)
            && self.s.eat_if('.')
            && base == 10
        {
            self.s.eat_while(char::is_ascii_digit);
        }

        // Read the exponent.
        if !self.s.at("em") && self.s.eat_if(['e', 'E']) && base == 10 {
            self.s.eat_if(['+', '-']);
            self.s.eat_while(char::is_ascii_digit);
        }

        // Read the suffix.
        let suffix_start = self.s.cursor();
        if !self.s.eat_if('%') {
            self.s.eat_while(char::is_ascii_alphanumeric);
        }

        let number = self.s.get(start..suffix_start);
        let suffix = self.s.from(suffix_start);

        let kind = if i64::from_str_radix(number, base).is_ok() {
            SyntaxKind::Int
        } else if base == 10 && number.parse::<f64>().is_ok() {
            SyntaxKind::Float
        } else {
            return self.error(match base {
                2 => eco_format!("invalid binary number: 0b{}", number),
                8 => eco_format!("invalid octal number: 0o{}", number),
                16 => eco_format!("invalid hexadecimal number: 0x{}", number),
                _ => eco_format!("invalid number: {}", number),
            });
        };

        if suffix.is_empty() {
            return kind;
        }

        if !matches!(
            suffix,
            "pt" | "mm" | "cm" | "in" | "deg" | "rad" | "em" | "fr" | "%"
        ) {
            return self.error(eco_format!("invalid number suffix: {}", suffix));
        }

        if base != 10 {
            let kind = self.error(eco_format!("invalid base-{base} prefix"));
            self.hint("numbers with a unit cannot have a base prefix");
            return kind;
        }

        SyntaxKind::Numeric
    }

    fn string(&mut self) -> SyntaxKind {
        let mut escaped = false;
        self.s.eat_until(|c| {
            let stop = c == '"' && !escaped;
            escaped = c == '\\' && !escaped;
            stop
        });

        if !self.s.eat_if('"') {
            return self.error("unclosed string");
        }

        SyntaxKind::Str
    }
}

/// Try to parse an identifier into a keyword.
fn keyword(ident: &str) -> Option<SyntaxKind> {
    Some(match ident {
        "none" => SyntaxKind::None,
        "auto" => SyntaxKind::Auto,
        "true" => SyntaxKind::Bool,
        "false" => SyntaxKind::Bool,
        "not" => SyntaxKind::Not,
        "and" => SyntaxKind::And,
        "or" => SyntaxKind::Or,
        "let" => SyntaxKind::Let,
        "set" => SyntaxKind::Set,
        "show" => SyntaxKind::Show,
        "context" => SyntaxKind::Context,
        "if" => SyntaxKind::If,
        "else" => SyntaxKind::Else,
        "for" => SyntaxKind::For,
        "in" => SyntaxKind::In,
        "while" => SyntaxKind::While,
        "break" => SyntaxKind::Break,
        "continue" => SyntaxKind::Continue,
        "return" => SyntaxKind::Return,
        "import" => SyntaxKind::Import,
        "include" => SyntaxKind::Include,
        "as" => SyntaxKind::As,
        _ => return None,
    })
}

trait ScannerExt {
    fn advance(&mut self, by: usize);
    fn eat_newline(&mut self) -> bool;
}

impl ScannerExt for Scanner<'_> {
    fn advance(&mut self, by: usize) {
        self.jump(self.cursor() + by);
    }

    fn eat_newline(&mut self) -> bool {
        let ate = self.eat_if(is_newline);
        if ate && self.before().ends_with('\r') {
            self.eat_if('\n');
        }
        ate
    }
}

/// Whether a character will become a [`SyntaxKind::Space`] token.
#[inline]
fn is_space(character: char, mode: LexMode) -> bool {
    match mode {
        LexMode::Markup => matches!(character, ' ' | '\t') || is_newline(character),
        _ => character.is_whitespace(),
    }
}

/// Whether a character is interpreted as a newline by Typst.
#[inline]
pub fn is_newline(character: char) -> bool {
    matches!(
        character,
        // Line Feed, Vertical Tab, Form Feed, Carriage Return.
        '\n' | '\x0B' | '\x0C' | '\r' |
        // Next Line, Line Separator, Paragraph Separator.
        '\u{0085}' | '\u{2028}' | '\u{2029}'
    )
}

/// Extracts a prefix of the text that is a link and also returns whether the
/// parentheses and brackets in the link were balanced.
pub fn link_prefix(text: &str) -> (&str, bool) {
    let mut s = unscanny::Scanner::new(text);
    let mut brackets = Vec::new();

    #[rustfmt::skip]
    s.eat_while(|c: char| {
        match c {
            | '0' ..= '9'
            | 'a' ..= 'z'
            | 'A' ..= 'Z'
            | '!' | '#' | '$' | '%' | '&' | '*' | '+'
            | ',' | '-' | '.' | '/' | ':' | ';' | '='
            | '?' | '@' | '_' | '~' | '\'' => true,
            '[' => {
                brackets.push(b'[');
                true
            }
            '(' => {
                brackets.push(b'(');
                true
            }
            ']' => brackets.pop() == Some(b'['),
            ')' => brackets.pop() == Some(b'('),
            _ => false,
        }
    });

    // Don't include the trailing characters likely to be part of text.
    while matches!(s.scout(-1), Some('!' | ',' | '.' | ':' | ';' | '?' | '\'')) {
        s.uneat();
    }

    (s.before(), brackets.is_empty())
}

/// Split text at newlines. These newline characters are not kept.
pub fn split_newlines(text: &str) -> Vec<&str> {
    let mut s = Scanner::new(text);
    let mut lines = Vec::new();
    let mut start = 0;
    let mut end = 0;

    while let Some(c) = s.eat() {
        if is_newline(c) {
            if c == '\r' {
                s.eat_if('\n');
            }

            lines.push(&text[start..end]);
            start = s.cursor();
        }
        end = s.cursor();
    }

    lines.push(&text[start..]);
    lines
}

/// Count the number of newlines in text.
fn count_newlines(text: &str) -> usize {
    let mut newlines = 0;
    let mut s = Scanner::new(text);
    while let Some(c) = s.eat() {
        if is_newline(c) {
            if c == '\r' {
                s.eat_if('\n');
            }
            newlines += 1;
        }
    }
    newlines
}

/// Whether a string is a valid Typst identifier.
///
/// In addition to what is specified in the [Unicode Standard][uax31], we allow:
/// - `_` as a starting character,
/// - `_` and `-` as continuing characters.
///
/// [uax31]: http://www.unicode.org/reports/tr31/
#[inline]
pub fn is_ident(string: &str) -> bool {
    let mut chars = string.chars();
    chars
        .next()
        .is_some_and(|c| is_id_start(c) && chars.all(is_id_continue))
}

/// Whether a character can start an identifier.
#[inline]
pub fn is_id_start(c: char) -> bool {
    is_xid_start(c) || c == '_'
}

/// Whether a character can continue an identifier.
#[inline]
pub fn is_id_continue(c: char) -> bool {
    is_xid_continue(c) || c == '_' || c == '-'
}

/// Whether a character can start an identifier in math.
#[inline]
fn is_math_id_start(c: char) -> bool {
    is_xid_start(c)
}

/// Whether a character can continue an identifier in math.
#[inline]
fn is_math_id_continue(c: char) -> bool {
    is_xid_continue(c) && c != '_'
}

/// Whether a character can be part of a label literal's name.
#[inline]
fn is_valid_in_label_literal(c: char) -> bool {
    is_id_continue(c) || matches!(c, ':' | '.')
}

/// Returns true if this string is valid in a label literal.
pub fn is_valid_label_literal_id(id: &str) -> bool {
    !id.is_empty() && id.chars().all(is_valid_in_label_literal)
}