typst_library/visualize/
gradient.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
use std::f64::consts::{FRAC_PI_2, PI, TAU};
use std::fmt::{self, Debug, Formatter};
use std::hash::Hash;
use std::sync::Arc;

use ecow::EcoString;
use kurbo::Vec2;
use typst_syntax::{Span, Spanned};

use crate::diag::{bail, SourceResult};
use crate::foundations::{
    array, cast, func, scope, ty, Args, Array, Cast, Func, IntoValue, Repr, Smart,
};
use crate::layout::{Angle, Axes, Dir, Quadrant, Ratio};
use crate::visualize::{Color, ColorSpace, WeightedColor};

/// A color gradient.
///
/// Typst supports linear gradients through the
/// [`gradient.linear` function]($gradient.linear), radial gradients through
/// the [`gradient.radial` function]($gradient.radial), and conic gradients
/// through the [`gradient.conic` function]($gradient.conic).
///
/// A gradient can be used for the following purposes:
/// - As a fill to paint the interior of a shape:
///   `{rect(fill: gradient.linear(..))}`
/// - As a stroke to paint the outline of a shape:
///   `{rect(stroke: 1pt + gradient.linear(..))}`
/// - As the fill of text:
///   `{set text(fill: gradient.linear(..))}`
/// - As a color map you can [sample]($gradient.sample) from:
///   `{gradient.linear(..).sample(50%)}`
///
/// # Examples
/// ```example
/// >>> #set square(size: 50pt)
/// #stack(
///   dir: ltr,
///   spacing: 1fr,
///   square(fill: gradient.linear(..color.map.rainbow)),
///   square(fill: gradient.radial(..color.map.rainbow)),
///   square(fill: gradient.conic(..color.map.rainbow)),
/// )
/// ```
///
/// Gradients are also supported on text, but only when setting the
/// [relativeness]($gradient.relative) to either `{auto}` (the default value) or
/// `{"parent"}`. To create word-by-word or glyph-by-glyph gradients, you can
/// wrap the words or characters of your text in [boxes]($box) manually or
/// through a [show rule]($styling/#show-rules).
///
/// ```example
/// >>> #set page(width: auto, height: auto, margin: 12pt)
/// >>> #set text(size: 12pt)
/// #set text(fill: gradient.linear(red, blue))
/// #let rainbow(content) = {
///   set text(fill: gradient.linear(..color.map.rainbow))
///   box(content)
/// }
///
/// This is a gradient on text, but with a #rainbow[twist]!
/// ```
///
/// # Stops
/// A gradient is composed of a series of stops. Each of these stops has a color
/// and an offset. The offset is a [ratio]($ratio) between `{0%}` and `{100%}` or
/// an angle between `{0deg}` and `{360deg}`. The offset is a relative position
/// that determines how far along the gradient the stop is located. The stop's
/// color is the color of the gradient at that position. You can choose to omit
/// the offsets when defining a gradient. In this case, Typst will space all
/// stops evenly.
///
/// # Relativeness
/// The location of the `{0%}` and `{100%}` stops depends on the dimensions
/// of a container. This container can either be the shape that it is being
/// painted on, or the closest surrounding container. This is controlled by the
/// `relative` argument of a gradient constructor. By default, gradients are
/// relative to the shape they are being painted on, unless the gradient is
/// applied on text, in which case they are relative to the closest ancestor
/// container.
///
/// Typst determines the ancestor container as follows:
/// - For shapes that are placed at the root/top level of the document, the
///   closest ancestor is the page itself.
/// - For other shapes, the ancestor is the innermost [`block`] or [`box`] that
///   contains the shape. This includes the boxes and blocks that are implicitly
///   created by show rules and elements. For example, a [`rotate`] will not
///   affect the parent of a gradient, but a [`grid`] will.
///
/// # Color spaces and interpolation
/// Gradients can be interpolated in any color space. By default, gradients are
/// interpolated in the [Oklab]($color.oklab) color space, which is a
/// [perceptually uniform](https://programmingdesignsystems.com/color/perceptually-uniform-color-spaces/index.html)
/// color space. This means that the gradient will be perceived as having a
/// smooth progression of colors. This is particularly useful for data
/// visualization.
///
/// However, you can choose to interpolate the gradient in any supported color
/// space you want, but beware that some color spaces are not suitable for
/// perceptually interpolating between colors. Consult the table below when
/// choosing an interpolation space.
///
/// |           Color space           | Perceptually uniform? |
/// | ------------------------------- |-----------------------|
/// | [Oklab]($color.oklab)           | *Yes*                 |
/// | [Oklch]($color.oklch)           | *Yes*                 |
/// | [sRGB]($color.rgb)              | *No*                  |
/// | [linear-RGB]($color.linear-rgb) | *Yes*                 |
/// | [CMYK]($color.cmyk)             | *No*                  |
/// | [Grayscale]($color.luma)        | *Yes*                 |
/// | [HSL]($color.hsl)               | *No*                  |
/// | [HSV]($color.hsv)               | *No*                  |
///
/// ```preview
/// >>> #set text(fill: white, font: "IBM Plex Sans", 8pt)
/// >>> #set block(spacing: 0pt)
/// #let spaces = (
///   ("Oklab", color.oklab),
///   ("Oklch", color.oklch),
///   ("linear-RGB", color.linear-rgb),
///   ("sRGB", color.rgb),
///   ("CMYK", color.cmyk),
///   ("HSL", color.hsl),
///   ("HSV", color.hsv),
///   ("Grayscale", color.luma),
/// )
///
/// #for (name, space) in spaces {
///   block(
///     width: 100%,
///     inset: 4pt,
///     fill: gradient.linear(
///       red,
///       blue,
///       space: space,
///     ),
///     strong(upper(name)),
///   )
/// }
/// ```
///
/// # Direction
/// Some gradients are sensitive to direction. For example, a linear gradient
/// has an angle that determines its direction. Typst uses a clockwise angle,
/// with 0° being from left to right, 90° from top to bottom, 180° from right to
/// left, and 270° from bottom to top.
///
/// ```example
/// >>> #set square(size: 50pt)
/// #stack(
///   dir: ltr,
///   spacing: 1fr,
///   square(fill: gradient.linear(red, blue, angle: 0deg)),
///   square(fill: gradient.linear(red, blue, angle: 90deg)),
///   square(fill: gradient.linear(red, blue, angle: 180deg)),
///   square(fill: gradient.linear(red, blue, angle: 270deg)),
/// )
/// ```
///
/// # Presets
/// Typst predefines color maps that you can use with your gradients. See the
/// [`color`]($color/#predefined-color-maps) documentation for more details.
///
/// # Note on file sizes
///
/// Gradients can be quite large, especially if they have many stops. This is
/// because gradients are stored as a list of colors and offsets, which can
/// take up a lot of space. If you are concerned about file sizes, you should
/// consider the following:
/// - SVG gradients are currently inefficiently encoded. This will be improved
///   in the future.
/// - PDF gradients in the [`color.oklab`]($color.oklab), [`color.hsv`]($color.hsv),
///   [`color.hsl`]($color.hsl), and [`color.oklch`]($color.oklch) color spaces
///   are stored as a list of [`color.rgb`]($color.rgb) colors with extra stops
///   in between. This avoids needing to encode these color spaces in your PDF
///   file, but it does add extra stops to your gradient, which can increase
///   the file size.
#[ty(scope, cast)]
#[derive(Clone, PartialEq, Eq, Hash)]
pub enum Gradient {
    Linear(Arc<LinearGradient>),
    Radial(Arc<RadialGradient>),
    Conic(Arc<ConicGradient>),
}

#[scope]
#[allow(clippy::too_many_arguments)]
impl Gradient {
    /// Creates a new linear gradient, in which colors transition along a
    /// straight line.
    ///
    /// ```example
    /// #rect(
    ///   width: 100%,
    ///   height: 20pt,
    ///   fill: gradient.linear(
    ///     ..color.map.viridis,
    ///   ),
    /// )
    /// ```
    #[func(title = "Linear Gradient")]
    pub fn linear(
        args: &mut Args,
        span: Span,
        /// The color [stops](#stops) of the gradient.
        #[variadic]
        stops: Vec<Spanned<GradientStop>>,
        /// The color space in which to interpolate the gradient.
        ///
        /// Defaults to a perceptually uniform color space called
        /// [Oklab]($color.oklab).
        #[named]
        #[default(ColorSpace::Oklab)]
        space: ColorSpace,
        /// The [relative placement](#relativeness) of the gradient.
        ///
        /// For an element placed at the root/top level of the document, the
        /// parent is the page itself. For other elements, the parent is the
        /// innermost block, box, column, grid, or stack that contains the
        /// element.
        #[named]
        #[default(Smart::Auto)]
        relative: Smart<RelativeTo>,
        /// The direction of the gradient.
        #[external]
        #[default(Dir::LTR)]
        dir: Dir,
        /// The angle of the gradient.
        #[external]
        angle: Angle,
    ) -> SourceResult<Gradient> {
        let angle = if let Some(angle) = args.named::<Angle>("angle")? {
            angle
        } else if let Some(dir) = args.named::<Dir>("dir")? {
            match dir {
                Dir::LTR => Angle::rad(0.0),
                Dir::RTL => Angle::rad(PI),
                Dir::TTB => Angle::rad(FRAC_PI_2),
                Dir::BTT => Angle::rad(3.0 * FRAC_PI_2),
            }
        } else {
            Angle::rad(0.0)
        };

        if stops.len() < 2 {
            bail!(
                span, "a gradient must have at least two stops";
                hint: "try filling the shape with a single color instead"
            );
        }

        Ok(Self::Linear(Arc::new(LinearGradient {
            stops: process_stops(&stops)?,
            angle,
            space,
            relative,
            anti_alias: true,
        })))
    }

    /// Creates a new radial gradient, in which colors radiate away from an
    /// origin.
    ///
    /// The gradient is defined by two circles: the focal circle and the end
    /// circle. The focal circle is a circle with center `focal-center` and
    /// radius `focal-radius`, that defines the points at which the gradient
    /// starts and has the color of the first stop. The end circle is a circle
    /// with center `center` and radius `radius`, that defines the points at
    /// which the gradient ends and has the color of the last stop. The gradient
    /// is then interpolated between these two circles.
    ///
    /// Using these four values, also called the focal point for the starting
    /// circle and the center and radius for the end circle, we can define a
    /// gradient with more interesting properties than a basic radial gradient.
    ///
    /// ```example
    /// >>> #set circle(radius: 30pt)
    /// #stack(
    ///   dir: ltr,
    ///   spacing: 1fr,
    ///   circle(fill: gradient.radial(
    ///     ..color.map.viridis,
    ///   )),
    ///   circle(fill: gradient.radial(
    ///     ..color.map.viridis,
    ///     focal-center: (10%, 40%),
    ///     focal-radius: 5%,
    ///   )),
    /// )
    /// ```
    #[func]
    fn radial(
        span: Span,
        /// The color [stops](#stops) of the gradient.
        #[variadic]
        stops: Vec<Spanned<GradientStop>>,
        /// The color space in which to interpolate the gradient.
        ///
        /// Defaults to a perceptually uniform color space called
        /// [Oklab]($color.oklab).
        #[named]
        #[default(ColorSpace::Oklab)]
        space: ColorSpace,
        /// The [relative placement](#relativeness) of the gradient.
        ///
        /// For an element placed at the root/top level of the document, the parent
        /// is the page itself. For other elements, the parent is the innermost block,
        /// box, column, grid, or stack that contains the element.
        #[named]
        #[default(Smart::Auto)]
        relative: Smart<RelativeTo>,
        /// The center of the end circle of the gradient.
        ///
        /// A value of `{(50%, 50%)}` means that the end circle is
        /// centered inside of its container.
        #[named]
        #[default(Axes::splat(Ratio::new(0.5)))]
        center: Axes<Ratio>,
        /// The radius of the end circle of the gradient.
        ///
        /// By default, it is set to `{50%}`. The ending radius must be bigger
        /// than the focal radius.
        #[named]
        #[default(Spanned::new(Ratio::new(0.5), Span::detached()))]
        radius: Spanned<Ratio>,
        /// The center of the focal circle of the gradient.
        ///
        /// The focal center must be inside of the end circle.
        ///
        /// A value of `{(50%, 50%)}` means that the focal circle is
        /// centered inside of its container.
        ///
        /// By default it is set to the same as the center of the last circle.
        #[named]
        #[default(Smart::Auto)]
        focal_center: Smart<Axes<Ratio>>,
        /// The radius of the focal circle of the gradient.
        ///
        /// The focal center must be inside of the end circle.
        ///
        /// By default, it is set to `{0%}`. The focal radius must be smaller
        /// than the ending radius`.
        #[named]
        #[default(Spanned::new(Ratio::new(0.0), Span::detached()))]
        focal_radius: Spanned<Ratio>,
    ) -> SourceResult<Gradient> {
        if stops.len() < 2 {
            bail!(
                span, "a gradient must have at least two stops";
                hint: "try filling the shape with a single color instead"
            );
        }

        if focal_radius.v > radius.v {
            bail!(
                focal_radius.span,
                "the focal radius must be smaller than the end radius";
                hint: "try using a focal radius of `0%` instead"
            );
        }

        let focal_center = focal_center.unwrap_or(center);
        let d_center_sqr = (focal_center.x - center.x).get().powi(2)
            + (focal_center.y - center.y).get().powi(2);
        if d_center_sqr.sqrt() >= (radius.v - focal_radius.v).get() {
            bail!(
                span,
                "the focal circle must be inside of the end circle";
                hint: "try using a focal center of `auto` instead"
            );
        }

        Ok(Gradient::Radial(Arc::new(RadialGradient {
            stops: process_stops(&stops)?,
            center: center.map(From::from),
            radius: radius.v,
            focal_center,
            focal_radius: focal_radius.v,
            space,
            relative,
            anti_alias: true,
        })))
    }

    /// Creates a new conic gradient, in which colors change radially around a
    /// center point.
    ///
    /// You can control the center point of the gradient by using the `center`
    /// argument. By default, the center point is the center of the shape.
    ///
    /// ```example
    /// >>> #set circle(radius: 30pt)
    /// #stack(
    ///   dir: ltr,
    ///   spacing: 1fr,
    ///   circle(fill: gradient.conic(
    ///     ..color.map.viridis,
    ///   )),
    ///   circle(fill: gradient.conic(
    ///     ..color.map.viridis,
    ///     center: (20%, 30%),
    ///   )),
    /// )
    /// ```
    #[func]
    pub fn conic(
        span: Span,
        /// The color [stops](#stops) of the gradient.
        #[variadic]
        stops: Vec<Spanned<GradientStop>>,
        /// The angle of the gradient.
        #[named]
        #[default(Angle::zero())]
        angle: Angle,
        /// The color space in which to interpolate the gradient.
        ///
        /// Defaults to a perceptually uniform color space called
        /// [Oklab]($color.oklab).
        #[named]
        #[default(ColorSpace::Oklab)]
        space: ColorSpace,
        /// The [relative placement](#relativeness) of the gradient.
        ///
        /// For an element placed at the root/top level of the document, the parent
        /// is the page itself. For other elements, the parent is the innermost block,
        /// box, column, grid, or stack that contains the element.
        #[named]
        #[default(Smart::Auto)]
        relative: Smart<RelativeTo>,
        /// The center of the last circle of the gradient.
        ///
        /// A value of `{(50%, 50%)}` means that the end circle is
        /// centered inside of its container.
        #[named]
        #[default(Axes::splat(Ratio::new(0.5)))]
        center: Axes<Ratio>,
    ) -> SourceResult<Gradient> {
        if stops.len() < 2 {
            bail!(
                span, "a gradient must have at least two stops";
                hint: "try filling the shape with a single color instead"
            );
        }

        Ok(Gradient::Conic(Arc::new(ConicGradient {
            stops: process_stops(&stops)?,
            angle,
            center: center.map(From::from),
            space,
            relative,
            anti_alias: true,
        })))
    }

    /// Creates a sharp version of this gradient.
    ///
    /// Sharp gradients have discrete jumps between colors, instead of a
    /// smooth transition. They are particularly useful for creating color
    /// lists for a preset gradient.
    ///
    /// ```example
    /// #set rect(width: 100%, height: 20pt)
    /// #let grad = gradient.linear(..color.map.rainbow)
    /// #rect(fill: grad)
    /// #rect(fill: grad.sharp(5))
    /// #rect(fill: grad.sharp(5, smoothness: 20%))
    /// ```
    #[func]
    pub fn sharp(
        &self,
        /// The number of stops in the gradient.
        steps: Spanned<usize>,
        /// How much to smooth the gradient.
        #[named]
        #[default(Spanned::new(Ratio::zero(), Span::detached()))]
        smoothness: Spanned<Ratio>,
    ) -> SourceResult<Gradient> {
        if steps.v < 2 {
            bail!(steps.span, "sharp gradients must have at least two stops");
        }

        if smoothness.v.get() < 0.0 || smoothness.v.get() > 1.0 {
            bail!(smoothness.span, "smoothness must be between 0 and 1");
        }

        let n = steps.v;
        let smoothness = smoothness.v.get();
        let colors = (0..n)
            .flat_map(|i| {
                let c = self
                    .sample(RatioOrAngle::Ratio(Ratio::new(i as f64 / (n - 1) as f64)));

                [c, c]
            })
            .collect::<Vec<_>>();

        let mut positions = Vec::with_capacity(n * 2);
        let index_to_progress = |i| i as f64 * 1.0 / n as f64;

        let progress = smoothness * 1.0 / (4.0 * n as f64);
        for i in 0..n {
            let mut j = 2 * i;
            positions.push(index_to_progress(i));
            if j > 0 {
                positions[j] += progress;
            }

            j += 1;
            positions.push(index_to_progress(i + 1));
            if j < colors.len() - 1 {
                positions[j] -= progress;
            }
        }

        let mut stops = colors
            .into_iter()
            .zip(positions)
            .map(|(c, p)| (c, Ratio::new(p)))
            .collect::<Vec<_>>();

        stops.dedup();

        Ok(match self {
            Self::Linear(linear) => Self::Linear(Arc::new(LinearGradient {
                stops,
                angle: linear.angle,
                space: linear.space,
                relative: linear.relative,
                anti_alias: false,
            })),
            Self::Radial(radial) => Self::Radial(Arc::new(RadialGradient {
                stops,
                center: radial.center,
                radius: radial.radius,
                focal_center: radial.focal_center,
                focal_radius: radial.focal_radius,
                space: radial.space,
                relative: radial.relative,
                anti_alias: false,
            })),
            Self::Conic(conic) => Self::Conic(Arc::new(ConicGradient {
                stops,
                angle: conic.angle,
                center: conic.center,
                space: conic.space,
                relative: conic.relative,
                anti_alias: false,
            })),
        })
    }

    /// Repeats this gradient a given number of times, optionally mirroring it
    /// at each repetition.
    ///
    /// ```example
    /// #circle(
    ///   radius: 40pt,
    ///   fill: gradient
    ///     .radial(aqua, white)
    ///     .repeat(4),
    /// )
    /// ```
    #[func]
    pub fn repeat(
        &self,
        /// The number of times to repeat the gradient.
        repetitions: Spanned<usize>,
        /// Whether to mirror the gradient at each repetition.
        #[named]
        #[default(false)]
        mirror: bool,
    ) -> SourceResult<Gradient> {
        if repetitions.v == 0 {
            bail!(repetitions.span, "must repeat at least once");
        }

        let n = repetitions.v;
        let mut stops = std::iter::repeat(self.stops_ref())
            .take(n)
            .enumerate()
            .flat_map(|(i, stops)| {
                let mut stops = stops
                    .iter()
                    .map(move |&(color, offset)| {
                        let t = i as f64 / n as f64;
                        let r = offset.get();
                        if i % 2 == 1 && mirror {
                            (color, Ratio::new(t + (1.0 - r) / n as f64))
                        } else {
                            (color, Ratio::new(t + r / n as f64))
                        }
                    })
                    .collect::<Vec<_>>();

                if i % 2 == 1 && mirror {
                    stops.reverse();
                }

                stops
            })
            .collect::<Vec<_>>();

        stops.dedup();

        Ok(match self {
            Self::Linear(linear) => Self::Linear(Arc::new(LinearGradient {
                stops,
                angle: linear.angle,
                space: linear.space,
                relative: linear.relative,
                anti_alias: linear.anti_alias,
            })),
            Self::Radial(radial) => Self::Radial(Arc::new(RadialGradient {
                stops,
                center: radial.center,
                radius: radial.radius,
                focal_center: radial.focal_center,
                focal_radius: radial.focal_radius,
                space: radial.space,
                relative: radial.relative,
                anti_alias: radial.anti_alias,
            })),
            Self::Conic(conic) => Self::Conic(Arc::new(ConicGradient {
                stops,
                angle: conic.angle,
                center: conic.center,
                space: conic.space,
                relative: conic.relative,
                anti_alias: conic.anti_alias,
            })),
        })
    }

    /// Returns the kind of this gradient.
    #[func]
    pub fn kind(&self) -> Func {
        match self {
            Self::Linear(_) => Self::linear_data().into(),
            Self::Radial(_) => Self::radial_data().into(),
            Self::Conic(_) => Self::conic_data().into(),
        }
    }

    /// Returns the stops of this gradient.
    #[func]
    pub fn stops(&self) -> Vec<GradientStop> {
        match self {
            Self::Linear(linear) => linear
                .stops
                .iter()
                .map(|(color, offset)| GradientStop {
                    color: *color,
                    offset: Some(*offset),
                })
                .collect(),
            Self::Radial(radial) => radial
                .stops
                .iter()
                .map(|(color, offset)| GradientStop {
                    color: *color,
                    offset: Some(*offset),
                })
                .collect(),
            Self::Conic(conic) => conic
                .stops
                .iter()
                .map(|(color, offset)| GradientStop {
                    color: *color,
                    offset: Some(*offset),
                })
                .collect(),
        }
    }

    /// Returns the mixing space of this gradient.
    #[func]
    pub fn space(&self) -> ColorSpace {
        match self {
            Self::Linear(linear) => linear.space,
            Self::Radial(radial) => radial.space,
            Self::Conic(conic) => conic.space,
        }
    }

    /// Returns the relative placement of this gradient.
    #[func]
    pub fn relative(&self) -> Smart<RelativeTo> {
        match self {
            Self::Linear(linear) => linear.relative,
            Self::Radial(radial) => radial.relative,
            Self::Conic(conic) => conic.relative,
        }
    }

    /// Returns the angle of this gradient.
    ///
    /// Returns `{none}` if the gradient is neither linear nor conic.
    #[func]
    pub fn angle(&self) -> Option<Angle> {
        match self {
            Self::Linear(linear) => Some(linear.angle),
            Self::Radial(_) => None,
            Self::Conic(conic) => Some(conic.angle),
        }
    }

    /// Returns the center of this gradient.
    ///
    /// Returns `{none}` if the gradient is neither radial nor conic.
    #[func]
    pub fn center(&self) -> Option<Axes<Ratio>> {
        match self {
            Self::Linear(_) => None,
            Self::Radial(radial) => Some(radial.center),
            Self::Conic(conic) => Some(conic.center),
        }
    }

    /// Returns the radius of this gradient.
    ///
    /// Returns `{none}` if the gradient is not radial.
    #[func]
    pub fn radius(&self) -> Option<Ratio> {
        match self {
            Self::Linear(_) => None,
            Self::Radial(radial) => Some(radial.radius),
            Self::Conic(_) => None,
        }
    }

    /// Returns the focal-center of this gradient.
    ///
    /// Returns `{none}` if the gradient is not radial.
    #[func]
    pub fn focal_center(&self) -> Option<Axes<Ratio>> {
        match self {
            Self::Linear(_) => None,
            Self::Radial(radial) => Some(radial.focal_center),
            Self::Conic(_) => None,
        }
    }

    /// Returns the focal-radius of this gradient.
    ///
    /// Returns `{none}` if the gradient is not radial.
    #[func]
    pub fn focal_radius(&self) -> Option<Ratio> {
        match self {
            Self::Linear(_) => None,
            Self::Radial(radial) => Some(radial.focal_radius),
            Self::Conic(_) => None,
        }
    }

    /// Sample the gradient at a given position.
    ///
    /// The position is either a position along the gradient (a [ratio] between
    /// `{0%}` and `{100%}`) or an [angle]. Any value outside of this range will
    /// be clamped.
    #[func]
    pub fn sample(
        &self,
        /// The position at which to sample the gradient.
        t: RatioOrAngle,
    ) -> Color {
        let value: f64 = t.to_ratio().get();

        match self {
            Self::Linear(linear) => sample_stops(&linear.stops, linear.space, value),
            Self::Radial(radial) => sample_stops(&radial.stops, radial.space, value),
            Self::Conic(conic) => sample_stops(&conic.stops, conic.space, value),
        }
    }

    /// Samples the gradient at multiple positions at once and returns the
    /// results as an array.
    #[func]
    pub fn samples(
        &self,
        /// The positions at which to sample the gradient.
        #[variadic]
        ts: Vec<RatioOrAngle>,
    ) -> Array {
        ts.into_iter().map(|t| self.sample(t).into_value()).collect()
    }
}

impl Gradient {
    /// Clones this gradient, but with a different relative placement.
    pub fn with_relative(mut self, relative: RelativeTo) -> Self {
        match &mut self {
            Self::Linear(linear) => {
                Arc::make_mut(linear).relative = Smart::Custom(relative);
            }
            Self::Radial(radial) => {
                Arc::make_mut(radial).relative = Smart::Custom(relative);
            }
            Self::Conic(conic) => {
                Arc::make_mut(conic).relative = Smart::Custom(relative);
            }
        }

        self
    }
    /// Returns a reference to the stops of this gradient.
    pub fn stops_ref(&self) -> &[(Color, Ratio)] {
        match self {
            Gradient::Linear(linear) => &linear.stops,
            Gradient::Radial(radial) => &radial.stops,
            Gradient::Conic(conic) => &conic.stops,
        }
    }

    /// Samples the gradient at a given position, in the given container.
    /// Handles the aspect ratio and angle directly.
    pub fn sample_at(&self, (x, y): (f32, f32), (width, height): (f32, f32)) -> Color {
        // Normalize the coordinates.
        let (mut x, mut y) = (x / width, y / height);
        let t = match self {
            Self::Linear(linear) => {
                // Aspect ratio correction.
                let angle = Gradient::correct_aspect_ratio(
                    linear.angle,
                    Ratio::new((width / height) as f64),
                )
                .to_rad();
                let (sin, cos) = angle.sin_cos();

                let length = sin.abs() + cos.abs();
                if angle > FRAC_PI_2 && angle < 3.0 * FRAC_PI_2 {
                    x = 1.0 - x;
                }

                if angle > PI {
                    y = 1.0 - y;
                }

                (x as f64 * cos.abs() + y as f64 * sin.abs()) / length
            }
            Self::Radial(radial) => {
                // Source: @Enivex - https://typst.app/project/pYLeS0QyCCe8mf0pdnwoAI
                let cr = radial.radius.get();
                let fr = radial.focal_radius.get();
                let z = Vec2::new(x as f64, y as f64);
                let p = Vec2::new(radial.center.x.get(), radial.center.y.get());
                let q =
                    Vec2::new(radial.focal_center.x.get(), radial.focal_center.y.get());

                if (z - q).hypot() < fr {
                    0.0
                } else if (z - p).hypot() > cr {
                    1.0
                } else {
                    let uz = (z - q).normalize();
                    let az = (q - p).dot(uz);
                    let rho = cr.powi(2) - (q - p).hypot().powi(2);
                    let bz = (az.powi(2) + rho).sqrt() - az;

                    ((z - q).hypot() - fr) / (bz - fr)
                }
            }
            Self::Conic(conic) => {
                let (x, y) =
                    (x as f64 - conic.center.x.get(), y as f64 - conic.center.y.get());
                let angle = Gradient::correct_aspect_ratio(
                    conic.angle,
                    Ratio::new((width / height) as f64),
                );
                ((-y.atan2(x) + PI + angle.to_rad()) % TAU) / TAU
            }
        };

        self.sample(RatioOrAngle::Ratio(Ratio::new(t.clamp(0.0, 1.0))))
    }

    /// Does this gradient need to be anti-aliased?
    pub fn anti_alias(&self) -> bool {
        match self {
            Self::Linear(linear) => linear.anti_alias,
            Self::Radial(radial) => radial.anti_alias,
            Self::Conic(conic) => conic.anti_alias,
        }
    }

    /// Returns the relative placement of this gradient, handling
    /// the special case of `auto`.
    pub fn unwrap_relative(&self, on_text: bool) -> RelativeTo {
        self.relative().unwrap_or_else(|| {
            if on_text {
                RelativeTo::Parent
            } else {
                RelativeTo::Self_
            }
        })
    }

    /// Corrects this angle for the aspect ratio of a gradient.
    ///
    /// This is used specifically for gradients.
    pub fn correct_aspect_ratio(angle: Angle, aspect_ratio: Ratio) -> Angle {
        let rad = (angle.to_rad().rem_euclid(TAU).tan() / aspect_ratio.get()).atan();
        let rad = match angle.quadrant() {
            Quadrant::First => rad,
            Quadrant::Second => rad + PI,
            Quadrant::Third => rad + PI,
            Quadrant::Fourth => rad + TAU,
        };
        Angle::rad(rad.rem_euclid(TAU))
    }
}

impl Debug for Gradient {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        match self {
            Self::Linear(v) => v.fmt(f),
            Self::Radial(v) => v.fmt(f),
            Self::Conic(v) => v.fmt(f),
        }
    }
}

impl Repr for Gradient {
    fn repr(&self) -> EcoString {
        match self {
            Self::Radial(radial) => radial.repr(),
            Self::Linear(linear) => linear.repr(),
            Self::Conic(conic) => conic.repr(),
        }
    }
}

/// A gradient that interpolates between two colors along an axis.
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub struct LinearGradient {
    /// The color stops of this gradient.
    pub stops: Vec<(Color, Ratio)>,
    /// The direction of this gradient.
    pub angle: Angle,
    /// The color space in which to interpolate the gradient.
    pub space: ColorSpace,
    /// The relative placement of the gradient.
    pub relative: Smart<RelativeTo>,
    /// Whether to anti-alias the gradient (used for sharp gradients).
    pub anti_alias: bool,
}

impl Repr for LinearGradient {
    fn repr(&self) -> EcoString {
        let mut r = EcoString::from("gradient.linear(");

        let angle = self.angle.to_rad().rem_euclid(TAU);
        if angle.abs() < f64::EPSILON {
            // Default value, do nothing
        } else if (angle - FRAC_PI_2).abs() < f64::EPSILON {
            r.push_str("dir: rtl, ");
        } else if (angle - PI).abs() < f64::EPSILON {
            r.push_str("dir: ttb, ");
        } else if (angle - 3.0 * FRAC_PI_2).abs() < f64::EPSILON {
            r.push_str("dir: btt, ");
        } else {
            r.push_str("angle: ");
            r.push_str(&self.angle.repr());
            r.push_str(", ");
        }

        if self.space != ColorSpace::Oklab {
            r.push_str("space: ");
            r.push_str(&self.space.into_value().repr());
            r.push_str(", ");
        }

        if self.relative.is_custom() {
            r.push_str("relative: ");
            r.push_str(&self.relative.into_value().repr());
            r.push_str(", ");
        }

        for (i, (color, offset)) in self.stops.iter().enumerate() {
            r.push('(');
            r.push_str(&color.repr());
            r.push_str(", ");
            r.push_str(&offset.repr());
            r.push(')');
            if i != self.stops.len() - 1 {
                r.push_str(", ");
            }
        }

        r.push(')');
        r
    }
}

/// A gradient that interpolates between two colors along a circle.
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub struct RadialGradient {
    /// The color stops of this gradient.
    pub stops: Vec<(Color, Ratio)>,
    /// The center of last circle of this gradient.
    pub center: Axes<Ratio>,
    /// The radius of last circle of this gradient.
    pub radius: Ratio,
    /// The center of first circle of this gradient.
    pub focal_center: Axes<Ratio>,
    /// The radius of first circle of this gradient.
    pub focal_radius: Ratio,
    /// The color space in which to interpolate the gradient.
    pub space: ColorSpace,
    /// The relative placement of the gradient.
    pub relative: Smart<RelativeTo>,
    /// Whether to anti-alias the gradient (used for sharp gradients).
    pub anti_alias: bool,
}

impl Repr for RadialGradient {
    fn repr(&self) -> EcoString {
        let mut r = EcoString::from("gradient.radial(");

        if self.center.x != Ratio::new(0.5) || self.center.y != Ratio::new(0.5) {
            r.push_str("center: (");
            r.push_str(&self.center.x.repr());
            r.push_str(", ");
            r.push_str(&self.center.y.repr());
            r.push_str("), ");
        }

        if self.radius != Ratio::new(0.5) {
            r.push_str("radius: ");
            r.push_str(&self.radius.repr());
            r.push_str(", ");
        }

        if self.focal_center != self.center {
            r.push_str("focal-center: (");
            r.push_str(&self.focal_center.x.repr());
            r.push_str(", ");
            r.push_str(&self.focal_center.y.repr());
            r.push_str("), ");
        }

        if self.focal_radius != Ratio::zero() {
            r.push_str("focal-radius: ");
            r.push_str(&self.focal_radius.repr());
            r.push_str(", ");
        }

        if self.space != ColorSpace::Oklab {
            r.push_str("space: ");
            r.push_str(&self.space.into_value().repr());
            r.push_str(", ");
        }

        if self.relative.is_custom() {
            r.push_str("relative: ");
            r.push_str(&self.relative.into_value().repr());
            r.push_str(", ");
        }

        for (i, (color, offset)) in self.stops.iter().enumerate() {
            r.push('(');
            r.push_str(&color.repr());
            r.push_str(", ");
            r.push_str(&offset.repr());
            r.push(')');
            if i != self.stops.len() - 1 {
                r.push_str(", ");
            }
        }

        r.push(')');
        r
    }
}

/// A gradient that interpolates between two colors radially
/// around a center point.
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub struct ConicGradient {
    /// The color stops of this gradient.
    pub stops: Vec<(Color, Ratio)>,
    /// The direction of this gradient.
    pub angle: Angle,
    /// The center of last circle of this gradient.
    pub center: Axes<Ratio>,
    /// The color space in which to interpolate the gradient.
    pub space: ColorSpace,
    /// The relative placement of the gradient.
    pub relative: Smart<RelativeTo>,
    /// Whether to anti-alias the gradient (used for sharp gradients).
    pub anti_alias: bool,
}

impl Repr for ConicGradient {
    fn repr(&self) -> EcoString {
        let mut r = EcoString::from("gradient.conic(");

        let angle = self.angle.to_rad().rem_euclid(TAU);
        if angle.abs() > f64::EPSILON {
            r.push_str("angle: ");
            r.push_str(&self.angle.repr());
            r.push_str(", ");
        }

        if self.center.x != Ratio::new(0.5) || self.center.y != Ratio::new(0.5) {
            r.push_str("center: (");
            r.push_str(&self.center.x.repr());
            r.push_str(", ");
            r.push_str(&self.center.y.repr());
            r.push_str("), ");
        }

        if self.space != ColorSpace::Oklab {
            r.push_str("space: ");
            r.push_str(&self.space.into_value().repr());
            r.push_str(", ");
        }

        if self.relative.is_custom() {
            r.push_str("relative: ");
            r.push_str(&self.relative.into_value().repr());
            r.push_str(", ");
        }

        for (i, (color, offset)) in self.stops.iter().enumerate() {
            r.push('(');
            r.push_str(&color.repr());
            r.push_str(", ");
            r.push_str(&Angle::deg(offset.get() * 360.0).repr());
            r.push(')');
            if i != self.stops.len() - 1 {
                r.push_str(", ");
            }
        }

        r.push(')');
        r
    }
}

/// What is the gradient relative to.
#[derive(Cast, Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum RelativeTo {
    /// The gradient is relative to itself (its own bounding box).
    Self_,
    /// The gradient is relative to its parent (the parent's bounding box).
    Parent,
}

/// A color stop.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct GradientStop {
    /// The color for this stop.
    pub color: Color,
    /// The offset of the stop along the gradient.
    pub offset: Option<Ratio>,
}

impl GradientStop {
    /// Create a new stop from a `color` and an `offset`.
    pub fn new(color: Color, offset: Ratio) -> Self {
        Self { color, offset: Some(offset) }
    }
}

cast! {
    GradientStop,
    self => if let Some(offset) = self.offset {
        array![self.color.into_value(), offset].into_value()
    } else {
        self.color.into_value()
    },
    color: Color => Self { color, offset: None },
    array: Array => {
        let mut iter = array.into_iter();
        match (iter.next(), iter.next(), iter.next()) {
            (Some(a), Some(b), None) => Self {
                color: a.cast()?,
                offset: Some(b.cast()?)
            },
            _ => Err("a color stop must contain exactly two entries")?,
        }
    }
}

/// A ratio or an angle.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub enum RatioOrAngle {
    Ratio(Ratio),
    Angle(Angle),
}

impl RatioOrAngle {
    pub fn to_ratio(self) -> Ratio {
        match self {
            Self::Ratio(ratio) => ratio,
            Self::Angle(angle) => Ratio::new(angle.to_rad().rem_euclid(TAU) / TAU),
        }
        .clamp(Ratio::zero(), Ratio::one())
    }
}

cast! {
    RatioOrAngle,
    self => match self {
        Self::Ratio(ratio) => ratio.into_value(),
        Self::Angle(angle) => angle.into_value(),
    },
    ratio: Ratio => Self::Ratio(ratio),
    angle: Angle => Self::Angle(angle),
}

/// Pre-processes the stops, checking that they are valid and computing the
/// offsets if necessary.
///
/// Returns an error if the stops are invalid.
///
/// This is split into its own function because it is used by all of the
/// different gradient types.
#[comemo::memoize]
fn process_stops(stops: &[Spanned<GradientStop>]) -> SourceResult<Vec<(Color, Ratio)>> {
    let has_offset = stops.iter().any(|stop| stop.v.offset.is_some());
    if has_offset {
        let mut last_stop = f64::NEG_INFINITY;
        for Spanned { v: stop, span } in stops.iter() {
            let Some(stop) = stop.offset else {
                bail!(
                    *span, "either all stops must have an offset or none of them can";
                    hint: "try adding an offset to all stops"
                );
            };

            if stop.get() < last_stop {
                bail!(*span, "offsets must be in strictly monotonic order");
            }

            last_stop = stop.get();
        }

        let out = stops
            .iter()
            .map(|Spanned { v: GradientStop { color, offset }, span }| {
                if offset.unwrap().get() > 1.0 || offset.unwrap().get() < 0.0 {
                    bail!(*span, "offset must be between 0 and 1");
                }
                Ok((*color, offset.unwrap()))
            })
            .collect::<SourceResult<Vec<_>>>()?;

        if out[0].1 != Ratio::zero() {
            bail!(
                stops[0].span,
                "first stop must have an offset of 0";
                hint: "try setting this stop to `0%`"
            );
        }

        if out[out.len() - 1].1 != Ratio::one() {
            bail!(
                stops[out.len() - 1].span,
                "last stop must have an offset of 100%";
                hint: "try setting this stop to `100%`"
            );
        }

        return Ok(out);
    }

    Ok(stops
        .iter()
        .enumerate()
        .map(|(i, stop)| {
            let offset = i as f64 / (stops.len() - 1) as f64;
            (stop.v.color, Ratio::new(offset))
        })
        .collect())
}

/// Sample the stops at a given position.
fn sample_stops(stops: &[(Color, Ratio)], mixing_space: ColorSpace, t: f64) -> Color {
    let t = t.clamp(0.0, 1.0);
    let mut low = 0;
    let mut high = stops.len();

    while low < high {
        let mid = (low + high) / 2;
        if stops[mid].1.get() < t {
            low = mid + 1;
        } else {
            high = mid;
        }
    }

    if low == 0 {
        low = 1;
    }

    let (col_0, pos_0) = stops[low - 1];
    let (col_1, pos_1) = stops[low];
    let t = (t - pos_0.get()) / (pos_1.get() - pos_0.get());

    Color::mix_iter(
        [WeightedColor::new(col_0, 1.0 - t), WeightedColor::new(col_1, t)],
        mixing_space,
    )
    .unwrap()
}