typst_library/layout/grid/resolve.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
use std::num::NonZeroUsize;
use std::sync::Arc;
use ecow::eco_format;
use typst_library::diag::{
bail, At, Hint, HintedStrResult, HintedString, SourceResult, Trace, Tracepoint,
};
use typst_library::engine::Engine;
use typst_library::foundations::{Content, Fold, Packed, Smart, StyleChain};
use typst_library::introspection::Locator;
use typst_library::layout::{
Abs, Alignment, Axes, Celled, GridCell, GridChild, GridElem, GridItem, Length,
OuterHAlignment, OuterVAlignment, Rel, ResolvedCelled, Sides, Sizing,
};
use typst_library::model::{TableCell, TableChild, TableElem, TableItem};
use typst_library::text::TextElem;
use typst_library::visualize::{Paint, Stroke};
use typst_library::Dir;
use typst_syntax::Span;
use typst_utils::NonZeroExt;
/// Convert a grid to a cell grid.
#[typst_macros::time(span = elem.span())]
pub fn grid_to_cellgrid<'a>(
elem: &Packed<GridElem>,
engine: &mut Engine,
locator: Locator<'a>,
styles: StyleChain,
) -> SourceResult<CellGrid<'a>> {
let inset = elem.inset(styles);
let align = elem.align(styles);
let columns = elem.columns(styles);
let rows = elem.rows(styles);
let column_gutter = elem.column_gutter(styles);
let row_gutter = elem.row_gutter(styles);
let fill = elem.fill(styles);
let stroke = elem.stroke(styles);
let tracks = Axes::new(columns.0.as_slice(), rows.0.as_slice());
let gutter = Axes::new(column_gutter.0.as_slice(), row_gutter.0.as_slice());
// Use trace to link back to the grid when a specific cell errors
let tracepoint = || Tracepoint::Call(Some(eco_format!("grid")));
let resolve_item = |item: &GridItem| grid_item_to_resolvable(item, styles);
let children = elem.children.iter().map(|child| match child {
GridChild::Header(header) => ResolvableGridChild::Header {
repeat: header.repeat(styles),
span: header.span(),
items: header.children.iter().map(resolve_item),
},
GridChild::Footer(footer) => ResolvableGridChild::Footer {
repeat: footer.repeat(styles),
span: footer.span(),
items: footer.children.iter().map(resolve_item),
},
GridChild::Item(item) => {
ResolvableGridChild::Item(grid_item_to_resolvable(item, styles))
}
});
CellGrid::resolve(
tracks,
gutter,
locator,
children,
fill,
align,
&inset,
&stroke,
engine,
styles,
elem.span(),
)
.trace(engine.world, tracepoint, elem.span())
}
/// Convert a table to a cell grid.
#[typst_macros::time(span = elem.span())]
pub fn table_to_cellgrid<'a>(
elem: &Packed<TableElem>,
engine: &mut Engine,
locator: Locator<'a>,
styles: StyleChain,
) -> SourceResult<CellGrid<'a>> {
let inset = elem.inset(styles);
let align = elem.align(styles);
let columns = elem.columns(styles);
let rows = elem.rows(styles);
let column_gutter = elem.column_gutter(styles);
let row_gutter = elem.row_gutter(styles);
let fill = elem.fill(styles);
let stroke = elem.stroke(styles);
let tracks = Axes::new(columns.0.as_slice(), rows.0.as_slice());
let gutter = Axes::new(column_gutter.0.as_slice(), row_gutter.0.as_slice());
// Use trace to link back to the table when a specific cell errors
let tracepoint = || Tracepoint::Call(Some(eco_format!("table")));
let resolve_item = |item: &TableItem| table_item_to_resolvable(item, styles);
let children = elem.children.iter().map(|child| match child {
TableChild::Header(header) => ResolvableGridChild::Header {
repeat: header.repeat(styles),
span: header.span(),
items: header.children.iter().map(resolve_item),
},
TableChild::Footer(footer) => ResolvableGridChild::Footer {
repeat: footer.repeat(styles),
span: footer.span(),
items: footer.children.iter().map(resolve_item),
},
TableChild::Item(item) => {
ResolvableGridChild::Item(table_item_to_resolvable(item, styles))
}
});
CellGrid::resolve(
tracks,
gutter,
locator,
children,
fill,
align,
&inset,
&stroke,
engine,
styles,
elem.span(),
)
.trace(engine.world, tracepoint, elem.span())
}
fn grid_item_to_resolvable(
item: &GridItem,
styles: StyleChain,
) -> ResolvableGridItem<Packed<GridCell>> {
match item {
GridItem::HLine(hline) => ResolvableGridItem::HLine {
y: hline.y(styles),
start: hline.start(styles),
end: hline.end(styles),
stroke: hline.stroke(styles),
span: hline.span(),
position: match hline.position(styles) {
OuterVAlignment::Top => LinePosition::Before,
OuterVAlignment::Bottom => LinePosition::After,
},
},
GridItem::VLine(vline) => ResolvableGridItem::VLine {
x: vline.x(styles),
start: vline.start(styles),
end: vline.end(styles),
stroke: vline.stroke(styles),
span: vline.span(),
position: match vline.position(styles) {
OuterHAlignment::Left if TextElem::dir_in(styles) == Dir::RTL => {
LinePosition::After
}
OuterHAlignment::Right if TextElem::dir_in(styles) == Dir::RTL => {
LinePosition::Before
}
OuterHAlignment::Start | OuterHAlignment::Left => LinePosition::Before,
OuterHAlignment::End | OuterHAlignment::Right => LinePosition::After,
},
},
GridItem::Cell(cell) => ResolvableGridItem::Cell(cell.clone()),
}
}
fn table_item_to_resolvable(
item: &TableItem,
styles: StyleChain,
) -> ResolvableGridItem<Packed<TableCell>> {
match item {
TableItem::HLine(hline) => ResolvableGridItem::HLine {
y: hline.y(styles),
start: hline.start(styles),
end: hline.end(styles),
stroke: hline.stroke(styles),
span: hline.span(),
position: match hline.position(styles) {
OuterVAlignment::Top => LinePosition::Before,
OuterVAlignment::Bottom => LinePosition::After,
},
},
TableItem::VLine(vline) => ResolvableGridItem::VLine {
x: vline.x(styles),
start: vline.start(styles),
end: vline.end(styles),
stroke: vline.stroke(styles),
span: vline.span(),
position: match vline.position(styles) {
OuterHAlignment::Left if TextElem::dir_in(styles) == Dir::RTL => {
LinePosition::After
}
OuterHAlignment::Right if TextElem::dir_in(styles) == Dir::RTL => {
LinePosition::Before
}
OuterHAlignment::Start | OuterHAlignment::Left => LinePosition::Before,
OuterHAlignment::End | OuterHAlignment::Right => LinePosition::After,
},
},
TableItem::Cell(cell) => ResolvableGridItem::Cell(cell.clone()),
}
}
impl ResolvableCell for Packed<TableCell> {
fn resolve_cell<'a>(
mut self,
x: usize,
y: usize,
fill: &Option<Paint>,
align: Smart<Alignment>,
inset: Sides<Option<Rel<Length>>>,
stroke: Sides<Option<Option<Arc<Stroke<Abs>>>>>,
breakable: bool,
locator: Locator<'a>,
styles: StyleChain,
) -> Cell<'a> {
let cell = &mut *self;
let colspan = cell.colspan(styles);
let rowspan = cell.rowspan(styles);
let breakable = cell.breakable(styles).unwrap_or(breakable);
let fill = cell.fill(styles).unwrap_or_else(|| fill.clone());
let cell_stroke = cell.stroke(styles);
let stroke_overridden =
cell_stroke.as_ref().map(|side| matches!(side, Some(Some(_))));
// Using a typical 'Sides' fold, an unspecified side loses to a
// specified side. Additionally, when both are specified, an inner
// None wins over the outer Some, and vice-versa. When both are
// specified and Some, fold occurs, which, remarkably, leads to an Arc
// clone.
//
// In the end, we flatten because, for layout purposes, an unspecified
// cell stroke is the same as specifying 'none', so we equate the two
// concepts.
let stroke = cell_stroke.fold(stroke).map(Option::flatten);
cell.push_x(Smart::Custom(x));
cell.push_y(Smart::Custom(y));
cell.push_fill(Smart::Custom(fill.clone()));
cell.push_align(match align {
Smart::Custom(align) => {
Smart::Custom(cell.align(styles).map_or(align, |inner| inner.fold(align)))
}
// Don't fold if the table is using outer alignment. Use the
// cell's alignment instead (which, in the end, will fold with
// the outer alignment when it is effectively displayed).
Smart::Auto => cell.align(styles),
});
cell.push_inset(Smart::Custom(
cell.inset(styles).map_or(inset, |inner| inner.fold(inset)),
));
cell.push_stroke(
// Here we convert the resolved stroke to a regular stroke, however
// with resolved units (that is, 'em' converted to absolute units).
// We also convert any stroke unspecified by both the cell and the
// outer stroke ('None' in the folded stroke) to 'none', that is,
// all sides are present in the resulting Sides object accessible
// by show rules on table cells.
stroke.as_ref().map(|side| {
Some(side.as_ref().map(|cell_stroke| {
Arc::new((**cell_stroke).clone().map(Length::from))
}))
}),
);
cell.push_breakable(Smart::Custom(breakable));
Cell {
body: self.pack(),
locator,
fill,
colspan,
rowspan,
stroke,
stroke_overridden,
breakable,
}
}
fn x(&self, styles: StyleChain) -> Smart<usize> {
(**self).x(styles)
}
fn y(&self, styles: StyleChain) -> Smart<usize> {
(**self).y(styles)
}
fn colspan(&self, styles: StyleChain) -> NonZeroUsize {
(**self).colspan(styles)
}
fn rowspan(&self, styles: StyleChain) -> NonZeroUsize {
(**self).rowspan(styles)
}
fn span(&self) -> Span {
Packed::span(self)
}
}
impl ResolvableCell for Packed<GridCell> {
fn resolve_cell<'a>(
mut self,
x: usize,
y: usize,
fill: &Option<Paint>,
align: Smart<Alignment>,
inset: Sides<Option<Rel<Length>>>,
stroke: Sides<Option<Option<Arc<Stroke<Abs>>>>>,
breakable: bool,
locator: Locator<'a>,
styles: StyleChain,
) -> Cell<'a> {
let cell = &mut *self;
let colspan = cell.colspan(styles);
let rowspan = cell.rowspan(styles);
let breakable = cell.breakable(styles).unwrap_or(breakable);
let fill = cell.fill(styles).unwrap_or_else(|| fill.clone());
let cell_stroke = cell.stroke(styles);
let stroke_overridden =
cell_stroke.as_ref().map(|side| matches!(side, Some(Some(_))));
// Using a typical 'Sides' fold, an unspecified side loses to a
// specified side. Additionally, when both are specified, an inner
// None wins over the outer Some, and vice-versa. When both are
// specified and Some, fold occurs, which, remarkably, leads to an Arc
// clone.
//
// In the end, we flatten because, for layout purposes, an unspecified
// cell stroke is the same as specifying 'none', so we equate the two
// concepts.
let stroke = cell_stroke.fold(stroke).map(Option::flatten);
cell.push_x(Smart::Custom(x));
cell.push_y(Smart::Custom(y));
cell.push_fill(Smart::Custom(fill.clone()));
cell.push_align(match align {
Smart::Custom(align) => {
Smart::Custom(cell.align(styles).map_or(align, |inner| inner.fold(align)))
}
// Don't fold if the grid is using outer alignment. Use the
// cell's alignment instead (which, in the end, will fold with
// the outer alignment when it is effectively displayed).
Smart::Auto => cell.align(styles),
});
cell.push_inset(Smart::Custom(
cell.inset(styles).map_or(inset, |inner| inner.fold(inset)),
));
cell.push_stroke(
// Here we convert the resolved stroke to a regular stroke, however
// with resolved units (that is, 'em' converted to absolute units).
// We also convert any stroke unspecified by both the cell and the
// outer stroke ('None' in the folded stroke) to 'none', that is,
// all sides are present in the resulting Sides object accessible
// by show rules on grid cells.
stroke.as_ref().map(|side| {
Some(side.as_ref().map(|cell_stroke| {
Arc::new((**cell_stroke).clone().map(Length::from))
}))
}),
);
cell.push_breakable(Smart::Custom(breakable));
Cell {
body: self.pack(),
locator,
fill,
colspan,
rowspan,
stroke,
stroke_overridden,
breakable,
}
}
fn x(&self, styles: StyleChain) -> Smart<usize> {
(**self).x(styles)
}
fn y(&self, styles: StyleChain) -> Smart<usize> {
(**self).y(styles)
}
fn colspan(&self, styles: StyleChain) -> NonZeroUsize {
(**self).colspan(styles)
}
fn rowspan(&self, styles: StyleChain) -> NonZeroUsize {
(**self).rowspan(styles)
}
fn span(&self) -> Span {
Packed::span(self)
}
}
/// Represents an explicit grid line (horizontal or vertical) specified by the
/// user.
pub struct Line {
/// The index of the track after this line. This will be the index of the
/// row a horizontal line is above of, or of the column right after a
/// vertical line.
///
/// Must be within `0..=tracks.len()` (where `tracks` is either `grid.cols`
/// or `grid.rows`, ignoring gutter tracks, as appropriate).
pub index: usize,
/// The index of the track at which this line starts being drawn.
/// This is the first column a horizontal line appears in, or the first row
/// a vertical line appears in.
///
/// Must be within `0..tracks.len()` minus gutter tracks.
pub start: usize,
/// The index after the last track through which the line is drawn.
/// Thus, the line is drawn through tracks `start..end` (note that `end` is
/// exclusive).
///
/// Must be within `1..=tracks.len()` minus gutter tracks.
/// `None` indicates the line should go all the way to the end.
pub end: Option<NonZeroUsize>,
/// The line's stroke. This is `None` when the line is explicitly used to
/// override a previously specified line.
pub stroke: Option<Arc<Stroke<Abs>>>,
/// The line's position in relation to the track with its index.
pub position: LinePosition,
}
/// A repeatable grid header. Starts at the first row.
pub struct Header {
/// The index after the last row included in this header.
pub end: usize,
}
/// A repeatable grid footer. Stops at the last row.
pub struct Footer {
/// The first row included in this footer.
pub start: usize,
}
/// A possibly repeatable grid object.
/// It still exists even when not repeatable, but must not have additional
/// considerations by grid layout, other than for consistency (such as making
/// a certain group of rows unbreakable).
pub enum Repeatable<T> {
Repeated(T),
NotRepeated(T),
}
impl<T> Repeatable<T> {
/// Gets the value inside this repeatable, regardless of whether
/// it repeats.
pub fn unwrap(&self) -> &T {
match self {
Self::Repeated(repeated) => repeated,
Self::NotRepeated(not_repeated) => not_repeated,
}
}
/// Returns `Some` if the value is repeated, `None` otherwise.
pub fn as_repeated(&self) -> Option<&T> {
match self {
Self::Repeated(repeated) => Some(repeated),
Self::NotRepeated(_) => None,
}
}
}
/// Used for cell-like elements which are aware of their final properties in
/// the table, and may have property overrides.
pub trait ResolvableCell {
/// Resolves the cell's fields, given its coordinates and default grid-wide
/// fill, align, inset and stroke properties, plus the expected value of
/// the `breakable` field.
/// Returns a final Cell.
#[allow(clippy::too_many_arguments)]
fn resolve_cell<'a>(
self,
x: usize,
y: usize,
fill: &Option<Paint>,
align: Smart<Alignment>,
inset: Sides<Option<Rel<Length>>>,
stroke: Sides<Option<Option<Arc<Stroke<Abs>>>>>,
breakable: bool,
locator: Locator<'a>,
styles: StyleChain,
) -> Cell<'a>;
/// Returns this cell's column override.
fn x(&self, styles: StyleChain) -> Smart<usize>;
/// Returns this cell's row override.
fn y(&self, styles: StyleChain) -> Smart<usize>;
/// The amount of columns spanned by this cell.
fn colspan(&self, styles: StyleChain) -> NonZeroUsize;
/// The amount of rows spanned by this cell.
fn rowspan(&self, styles: StyleChain) -> NonZeroUsize;
/// The cell's span, for errors.
fn span(&self) -> Span;
}
/// A grid item, possibly affected by automatic cell positioning. Can be either
/// a line or a cell.
pub enum ResolvableGridItem<T: ResolvableCell> {
/// A horizontal line in the grid.
HLine {
/// The row above which the horizontal line is drawn.
y: Smart<usize>,
start: usize,
end: Option<NonZeroUsize>,
stroke: Option<Arc<Stroke<Abs>>>,
/// The span of the corresponding line element.
span: Span,
/// The line's position. "before" here means on top of row `y`, while
/// "after" means below it.
position: LinePosition,
},
/// A vertical line in the grid.
VLine {
/// The column before which the vertical line is drawn.
x: Smart<usize>,
start: usize,
end: Option<NonZeroUsize>,
stroke: Option<Arc<Stroke<Abs>>>,
/// The span of the corresponding line element.
span: Span,
/// The line's position. "before" here means to the left of column `x`,
/// while "after" means to its right (both considering LTR).
position: LinePosition,
},
/// A cell in the grid.
Cell(T),
}
/// Represents a cell in CellGrid, to be laid out by GridLayouter.
pub struct Cell<'a> {
/// The cell's body.
pub body: Content,
/// The cell's locator.
pub locator: Locator<'a>,
/// The cell's fill.
pub fill: Option<Paint>,
/// The amount of columns spanned by the cell.
pub colspan: NonZeroUsize,
/// The amount of rows spanned by the cell.
pub rowspan: NonZeroUsize,
/// The cell's stroke.
///
/// We use an Arc to avoid unnecessary space usage when all sides are the
/// same, or when the strokes come from a common source.
pub stroke: Sides<Option<Arc<Stroke<Abs>>>>,
/// Which stroke sides were explicitly overridden by the cell, over the
/// grid's global stroke setting.
///
/// This is used to define whether or not this cell's stroke sides should
/// have priority over adjacent cells' stroke sides, if those don't
/// override their own stroke properties (and thus have less priority when
/// defining with which stroke to draw grid lines around this cell).
pub stroke_overridden: Sides<bool>,
/// Whether rows spanned by this cell can be placed in different pages.
/// By default, a cell spanning only fixed-size rows is unbreakable, while
/// a cell spanning at least one `auto`-sized row is breakable.
pub breakable: bool,
}
impl<'a> Cell<'a> {
/// Create a simple cell given its body and its locator.
pub fn new(body: Content, locator: Locator<'a>) -> Self {
Self {
body,
locator,
fill: None,
colspan: NonZeroUsize::ONE,
rowspan: NonZeroUsize::ONE,
stroke: Sides::splat(None),
stroke_overridden: Sides::splat(false),
breakable: true,
}
}
}
/// Indicates whether the line should be drawn before or after the track with
/// its index. This is mostly only relevant when gutter is used, since, then,
/// the position after a track is not the same as before the next
/// non-gutter track.
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum LinePosition {
/// The line should be drawn before its track (e.g. hline on top of a row).
Before,
/// The line should be drawn after its track (e.g. hline below a row).
After,
}
/// A grid entry.
pub enum Entry<'a> {
/// An entry which holds a cell.
Cell(Cell<'a>),
/// An entry which is merged with another cell.
Merged {
/// The index of the cell this entry is merged with.
parent: usize,
},
}
impl<'a> Entry<'a> {
/// Obtains the cell inside this entry, if this is not a merged cell.
pub fn as_cell(&self) -> Option<&Cell<'a>> {
match self {
Self::Cell(cell) => Some(cell),
Self::Merged { .. } => None,
}
}
}
/// Any grid child, which can be either a header or an item.
pub enum ResolvableGridChild<T: ResolvableCell, I> {
Header { repeat: bool, span: Span, items: I },
Footer { repeat: bool, span: Span, items: I },
Item(ResolvableGridItem<T>),
}
/// A grid of cells, including the columns, rows, and cell data.
pub struct CellGrid<'a> {
/// The grid cells.
pub entries: Vec<Entry<'a>>,
/// The column tracks including gutter tracks.
pub cols: Vec<Sizing>,
/// The row tracks including gutter tracks.
pub rows: Vec<Sizing>,
/// The vertical lines before each column, or on the end border.
/// Gutter columns are not included.
/// Contains up to 'cols_without_gutter.len() + 1' vectors of lines.
pub vlines: Vec<Vec<Line>>,
/// The horizontal lines on top of each row, or on the bottom border.
/// Gutter rows are not included.
/// Contains up to 'rows_without_gutter.len() + 1' vectors of lines.
pub hlines: Vec<Vec<Line>>,
/// The repeatable header of this grid.
pub header: Option<Repeatable<Header>>,
/// The repeatable footer of this grid.
pub footer: Option<Repeatable<Footer>>,
/// Whether this grid has gutters.
pub has_gutter: bool,
}
impl<'a> CellGrid<'a> {
/// Generates the cell grid, given the tracks and cells.
pub fn new(
tracks: Axes<&[Sizing]>,
gutter: Axes<&[Sizing]>,
cells: impl IntoIterator<Item = Cell<'a>>,
) -> Self {
let entries = cells.into_iter().map(Entry::Cell).collect();
Self::new_internal(tracks, gutter, vec![], vec![], None, None, entries)
}
/// Resolves and positions all cells in the grid before creating it.
/// Allows them to keep track of their final properties and positions
/// and adjust their fields accordingly.
/// Cells must implement Clone as they will be owned. Additionally, they
/// must implement Default in order to fill positions in the grid which
/// weren't explicitly specified by the user with empty cells.
#[allow(clippy::too_many_arguments)]
pub fn resolve<T, C, I>(
tracks: Axes<&[Sizing]>,
gutter: Axes<&[Sizing]>,
locator: Locator<'a>,
children: C,
fill: &Celled<Option<Paint>>,
align: &Celled<Smart<Alignment>>,
inset: &Celled<Sides<Option<Rel<Length>>>>,
stroke: &ResolvedCelled<Sides<Option<Option<Arc<Stroke>>>>>,
engine: &mut Engine,
styles: StyleChain,
span: Span,
) -> SourceResult<Self>
where
T: ResolvableCell + Default,
I: Iterator<Item = ResolvableGridItem<T>>,
C: IntoIterator<Item = ResolvableGridChild<T, I>>,
C::IntoIter: ExactSizeIterator,
{
let mut locator = locator.split();
// Number of content columns: Always at least one.
let c = tracks.x.len().max(1);
// Lists of lines.
// Horizontal lines are only pushed later to be able to check for row
// validity, since the amount of rows isn't known until all items were
// analyzed in the for loop below.
// We keep their spans so we can report errors later.
// The additional boolean indicates whether the hline had an automatic
// 'y' index, and is used to change the index of hlines at the top of a
// header or footer.
let mut pending_hlines: Vec<(Span, Line, bool)> = vec![];
// For consistency, only push vertical lines later as well.
let mut pending_vlines: Vec<(Span, Line)> = vec![];
let has_gutter = gutter.any(|tracks| !tracks.is_empty());
let mut header: Option<Header> = None;
let mut repeat_header = false;
// Stores where the footer is supposed to end, its span, and the
// actual footer structure.
let mut footer: Option<(usize, Span, Footer)> = None;
let mut repeat_footer = false;
// Resolves the breakability of a cell. Cells that span at least one
// auto-sized row or gutter are considered breakable.
let resolve_breakable = |y, rowspan| {
let auto = Sizing::Auto;
let zero = Sizing::Rel(Rel::zero());
tracks
.y
.iter()
.chain(std::iter::repeat(tracks.y.last().unwrap_or(&auto)))
.skip(y)
.take(rowspan)
.any(|row| row == &Sizing::Auto)
|| gutter
.y
.iter()
.chain(std::iter::repeat(gutter.y.last().unwrap_or(&zero)))
.skip(y)
.take(rowspan - 1)
.any(|row_gutter| row_gutter == &Sizing::Auto)
};
// We can't just use the cell's index in the 'cells' vector to
// determine its automatic position, since cells could have arbitrary
// positions, so the position of a cell in 'cells' can differ from its
// final position in 'resolved_cells' (see below).
// Therefore, we use a counter, 'auto_index', to determine the position
// of the next cell with (x: auto, y: auto). It is only stepped when
// a cell with (x: auto, y: auto), usually the vast majority, is found.
let mut auto_index: usize = 0;
// We have to rebuild the grid to account for arbitrary positions.
// Create at least 'children.len()' positions, since there could be at
// least 'children.len()' cells (if no explicit lines were specified),
// even though some of them might be placed in arbitrary positions and
// thus cause the grid to expand.
// Additionally, make sure we allocate up to the next multiple of 'c',
// since each row will have 'c' cells, even if the last few cells
// weren't explicitly specified by the user.
// We apply '% c' twice so that the amount of cells potentially missing
// is zero when 'children.len()' is already a multiple of 'c' (thus
// 'children.len() % c' would be zero).
let children = children.into_iter();
let Some(child_count) = children.len().checked_add((c - children.len() % c) % c)
else {
bail!(span, "too many cells or lines were given")
};
let mut resolved_cells: Vec<Option<Entry>> = Vec::with_capacity(child_count);
for child in children {
let mut is_header = false;
let mut is_footer = false;
let mut child_start = usize::MAX;
let mut child_end = 0;
let mut child_span = Span::detached();
let mut start_new_row = false;
let mut first_index_of_top_hlines = usize::MAX;
let mut first_index_of_non_top_hlines = usize::MAX;
let (header_footer_items, simple_item) = match child {
ResolvableGridChild::Header { repeat, span, items, .. } => {
if header.is_some() {
bail!(span, "cannot have more than one header");
}
is_header = true;
child_span = span;
repeat_header = repeat;
// If any cell in the header is automatically positioned,
// have it skip to the next row. This is to avoid having a
// header after a partially filled row just add cells to
// that row instead of starting a new one.
// FIXME: Revise this approach when headers can start from
// arbitrary rows.
start_new_row = true;
// Any hlines at the top of the header will start at this
// index.
first_index_of_top_hlines = pending_hlines.len();
(Some(items), None)
}
ResolvableGridChild::Footer { repeat, span, items, .. } => {
if footer.is_some() {
bail!(span, "cannot have more than one footer");
}
is_footer = true;
child_span = span;
repeat_footer = repeat;
// If any cell in the footer is automatically positioned,
// have it skip to the next row. This is to avoid having a
// footer after a partially filled row just add cells to
// that row instead of starting a new one.
start_new_row = true;
// Any hlines at the top of the footer will start at this
// index.
first_index_of_top_hlines = pending_hlines.len();
(Some(items), None)
}
ResolvableGridChild::Item(item) => (None, Some(item)),
};
let items = header_footer_items
.into_iter()
.flatten()
.chain(simple_item.into_iter());
for item in items {
let cell = match item {
ResolvableGridItem::HLine {
y,
start,
end,
stroke,
span,
position,
} => {
let has_auto_y = y.is_auto();
let y = y.unwrap_or_else(|| {
// Avoid placing the hline inside consecutive
// rowspans occupying all columns, as it'd just
// disappear, at least when there's no column
// gutter.
skip_auto_index_through_fully_merged_rows(
&resolved_cells,
&mut auto_index,
c,
);
// When no 'y' is specified for the hline, we place
// it under the latest automatically positioned
// cell.
// The current value of the auto index is always
// the index of the latest automatically positioned
// cell placed plus one (that's what we do in
// 'resolve_cell_position'), so we subtract 1 to
// get that cell's index, and place the hline below
// its row. The exception is when the auto_index is
// 0, meaning no automatically positioned cell was
// placed yet. In that case, we place the hline at
// the top of the table.
//
// Exceptionally, the hline will be placed before
// the minimum auto index if the current auto index
// from previous iterations is smaller than the
// minimum it should have for the current grid
// child. Effectively, this means that a hline at
// the start of a header will always appear above
// that header's first row. Similarly for footers.
auto_index
.checked_sub(1)
.map_or(0, |last_auto_index| last_auto_index / c + 1)
});
if end.is_some_and(|end| end.get() < start) {
bail!(span, "line cannot end before it starts");
}
let line = Line { index: y, start, end, stroke, position };
// Since the amount of rows is dynamic, delay placing
// hlines until after all cells were placed so we can
// properly verify if they are valid. Note that we
// can't place hlines even if we already know they
// would be in a valid row, since it's possible that we
// pushed pending hlines in the same row as this one in
// previous iterations, and we need to ensure that
// hlines from previous iterations are pushed to the
// final vector of hlines first - the order of hlines
// must be kept, as this matters when determining which
// one "wins" in case of conflict. Pushing the current
// hline before we push pending hlines later would
// change their order!
pending_hlines.push((span, line, has_auto_y));
continue;
}
ResolvableGridItem::VLine {
x,
start,
end,
stroke,
span,
position,
} => {
let x = x.unwrap_or_else(|| {
// When no 'x' is specified for the vline, we place
// it after the latest automatically positioned
// cell.
// The current value of the auto index is always
// the index of the latest automatically positioned
// cell placed plus one (that's what we do in
// 'resolve_cell_position'), so we subtract 1 to
// get that cell's index, and place the vline after
// its column. The exception is when the auto_index
// is 0, meaning no automatically positioned cell
// was placed yet. In that case, we place the vline
// to the left of the table.
//
// Exceptionally, a vline is also placed to the
// left of the table if we should start a new row
// for the next automatically positioned cell.
// For example, this means that a vline at
// the beginning of a header will be placed to its
// left rather than after the previous
// automatically positioned cell. Same for footers.
auto_index
.checked_sub(1)
.filter(|_| !start_new_row)
.map_or(0, |last_auto_index| last_auto_index % c + 1)
});
if end.is_some_and(|end| end.get() < start) {
bail!(span, "line cannot end before it starts");
}
let line = Line { index: x, start, end, stroke, position };
// For consistency with hlines, we only push vlines to
// the final vector of vlines after processing every
// cell.
pending_vlines.push((span, line));
continue;
}
ResolvableGridItem::Cell(cell) => cell,
};
let cell_span = cell.span();
let colspan = cell.colspan(styles).get();
let rowspan = cell.rowspan(styles).get();
// Let's calculate the cell's final position based on its
// requested position.
let resolved_index = {
let cell_x = cell.x(styles);
let cell_y = cell.y(styles);
resolve_cell_position(
cell_x,
cell_y,
colspan,
rowspan,
&resolved_cells,
&mut auto_index,
&mut start_new_row,
c,
)
.at(cell_span)?
};
let x = resolved_index % c;
let y = resolved_index / c;
if colspan > c - x {
bail!(
cell_span,
"cell's colspan would cause it to exceed the available column(s)";
hint: "try placing the cell in another position or reducing its colspan"
)
}
let Some(largest_index) = c
.checked_mul(rowspan - 1)
.and_then(|full_rowspan_offset| {
resolved_index.checked_add(full_rowspan_offset)
})
.and_then(|last_row_pos| last_row_pos.checked_add(colspan - 1))
else {
bail!(
cell_span,
"cell would span an exceedingly large position";
hint: "try reducing the cell's rowspan or colspan"
)
};
// Let's resolve the cell so it can determine its own fields
// based on its final position.
let cell = cell.resolve_cell(
x,
y,
&fill.resolve(engine, styles, x, y)?,
align.resolve(engine, styles, x, y)?,
inset.resolve(engine, styles, x, y)?,
stroke.resolve(engine, styles, x, y)?,
resolve_breakable(y, rowspan),
locator.next(&cell_span),
styles,
);
if largest_index >= resolved_cells.len() {
// Ensure the length of the vector of resolved cells is
// always a multiple of 'c' by pushing full rows every
// time. Here, we add enough absent positions (later
// converted to empty cells) to ensure the last row in the
// new vector length is completely filled. This is
// necessary so that those positions, even if not
// explicitly used at the end, are eventually susceptible
// to show rules and receive grid styling, as they will be
// resolved as empty cells in a second loop below.
let Some(new_len) = largest_index
.checked_add(1)
.and_then(|new_len| new_len.checked_add((c - new_len % c) % c))
else {
bail!(cell_span, "cell position too large")
};
// Here, the cell needs to be placed in a position which
// doesn't exist yet in the grid (out of bounds). We will
// add enough absent positions for this to be possible.
// They must be absent as no cells actually occupy them
// (they can be overridden later); however, if no cells
// occupy them as we finish building the grid, then such
// positions will be replaced by empty cells.
resolved_cells.resize_with(new_len, || None);
}
// The vector is large enough to contain the cell, so we can
// just index it directly to access the position it will be
// placed in. However, we still need to ensure we won't try to
// place a cell where there already is one.
let slot = &mut resolved_cells[resolved_index];
if slot.is_some() {
bail!(
cell_span,
"attempted to place a second cell at column {x}, row {y}";
hint: "try specifying your cells in a different order"
);
}
*slot = Some(Entry::Cell(cell));
// Now, if the cell spans more than one row or column, we fill
// the spanned positions in the grid with Entry::Merged
// pointing to the original cell as its parent.
for rowspan_offset in 0..rowspan {
let spanned_y = y + rowspan_offset;
let first_row_index = resolved_index + c * rowspan_offset;
for (colspan_offset, slot) in resolved_cells[first_row_index..]
[..colspan]
.iter_mut()
.enumerate()
{
let spanned_x = x + colspan_offset;
if spanned_x == x && spanned_y == y {
// This is the parent cell.
continue;
}
if slot.is_some() {
bail!(
cell_span,
"cell would span a previously placed cell at column {spanned_x}, row {spanned_y}";
hint: "try specifying your cells in a different order or reducing the cell's rowspan or colspan"
)
}
*slot = Some(Entry::Merged { parent: resolved_index });
}
}
if is_header || is_footer {
// Ensure each cell in a header or footer is fully
// contained within it.
child_start = child_start.min(y);
child_end = child_end.max(y + rowspan);
if start_new_row && child_start <= auto_index.div_ceil(c) {
// No need to start a new row as we already include
// the row of the next automatically positioned cell in
// the header or footer.
start_new_row = false;
}
if !start_new_row {
// From now on, upcoming hlines won't be at the top of
// the child, as the first automatically positioned
// cell was placed.
first_index_of_non_top_hlines =
first_index_of_non_top_hlines.min(pending_hlines.len());
}
}
}
if (is_header || is_footer) && child_start == usize::MAX {
// Empty header/footer: consider the header/footer to be
// at the next empty row after the latest auto index.
auto_index = find_next_empty_row(&resolved_cells, auto_index, c);
child_start = auto_index.div_ceil(c);
child_end = child_start + 1;
if resolved_cells.len() <= c * child_start {
// Ensure the automatically chosen row actually exists.
resolved_cells.resize_with(c * (child_start + 1), || None);
}
}
if is_header {
if child_start != 0 {
bail!(
child_span,
"header must start at the first row";
hint: "remove any rows before the header"
);
}
header = Some(Header {
// Later on, we have to correct this number in case there
// is gutter. But only once all cells have been analyzed
// and the header has fully expanded in the fixup loop
// below.
end: child_end,
});
}
if is_footer {
// Only check if the footer is at the end later, once we know
// the final amount of rows.
footer = Some((
child_end,
child_span,
Footer {
// Later on, we have to correct this number in case there
// is gutter, but only once all cells have been analyzed
// and the header's and footer's exact boundaries are
// known. That is because the gutter row immediately
// before the footer might not be included as part of
// the footer if it is contained within the header.
start: child_start,
},
));
}
if is_header || is_footer {
let amount_hlines = pending_hlines.len();
for (_, top_hline, has_auto_y) in pending_hlines
.get_mut(
first_index_of_top_hlines
..first_index_of_non_top_hlines.min(amount_hlines),
)
.unwrap_or(&mut [])
{
if *has_auto_y {
// Move this hline to the top of the child, as it was
// placed before the first automatically positioned cell
// and had an automatic index.
top_hline.index = child_start;
}
}
// Next automatically positioned cell goes under this header.
// FIXME: Consider only doing this if the header has any fully
// automatically positioned cells. Otherwise,
// `resolve_cell_position` should be smart enough to skip
// upcoming headers.
// Additionally, consider that cells with just an 'x' override
// could end up going too far back and making previous
// non-header rows into header rows (maybe they should be
// placed at the first row that is fully empty or something).
// Nothing we can do when both 'x' and 'y' were overridden, of
// course.
// None of the above are concerns for now, as headers must
// start at the first row.
auto_index = auto_index.max(c * child_end);
}
}
// If the user specified cells occupying less rows than the given rows,
// we shall expand the grid so that it has at least the given amount of
// rows.
let Some(expected_total_cells) = c.checked_mul(tracks.y.len()) else {
bail!(span, "too many rows were specified");
};
let missing_cells = expected_total_cells.saturating_sub(resolved_cells.len());
// Fixup phase (final step in cell grid generation):
// 1. Replace absent entries by resolved empty cells, and produce a
// vector of 'Entry' from 'Option<Entry>'.
// 2. Add enough empty cells to the end of the grid such that it has at
// least the given amount of rows.
// 3. If any cells were added to the header's rows after the header's
// creation, ensure the header expands enough to accommodate them
// across all of their spanned rows. Same for the footer.
// 4. If any cells before the footer try to span it, error.
let resolved_cells = resolved_cells
.into_iter()
.chain(std::iter::repeat_with(|| None).take(missing_cells))
.enumerate()
.map(|(i, cell)| {
if let Some(cell) = cell {
if let Some(parent_cell) = cell.as_cell() {
if let Some(header) = &mut header
{
let y = i / c;
if y < header.end {
// Ensure the header expands enough such that
// all cells inside it, even those added later,
// are fully contained within the header.
// FIXME: check if start < y < end when start can
// be != 0.
// FIXME: when start can be != 0, decide what
// happens when a cell after the header placed
// above it tries to span the header (either
// error or expand upwards).
header.end = header.end.max(y + parent_cell.rowspan.get());
}
}
if let Some((end, footer_span, footer)) = &mut footer {
let x = i % c;
let y = i / c;
let cell_end = y + parent_cell.rowspan.get();
if y < footer.start && cell_end > footer.start {
// Don't allow a cell before the footer to span
// it. Surely, we could move the footer to
// start at where this cell starts, so this is
// more of a design choice, as it's unlikely
// for the user to intentionally include a cell
// before the footer spanning it but not
// being repeated with it.
bail!(
*footer_span,
"footer would conflict with a cell placed before it at column {x} row {y}";
hint: "try reducing that cell's rowspan or moving the footer"
);
}
if y >= footer.start && y < *end {
// Expand the footer to include all rows
// spanned by this cell, as it is inside the
// footer.
*end = (*end).max(cell_end);
}
}
}
Ok(cell)
} else {
let x = i % c;
let y = i / c;
// Ensure all absent entries are affected by show rules and
// grid styling by turning them into resolved empty cells.
let new_cell = T::default().resolve_cell(
x,
y,
&fill.resolve(engine, styles, x, y)?,
align.resolve(engine, styles, x, y)?,
inset.resolve(engine, styles, x, y)?,
stroke.resolve(engine, styles, x, y)?,
resolve_breakable(y, 1),
locator.next(&()),
styles,
);
Ok(Entry::Cell(new_cell))
}
})
.collect::<SourceResult<Vec<Entry>>>()?;
// Populate the final lists of lines.
// For each line type (horizontal or vertical), we keep a vector for
// every group of lines with the same index.
let mut vlines: Vec<Vec<Line>> = vec![];
let mut hlines: Vec<Vec<Line>> = vec![];
let row_amount = resolved_cells.len().div_ceil(c);
for (line_span, line, _) in pending_hlines {
let y = line.index;
if y > row_amount {
bail!(line_span, "cannot place horizontal line at invalid row {y}");
}
if y == row_amount && line.position == LinePosition::After {
bail!(
line_span,
"cannot place horizontal line at the 'bottom' position of the bottom border (y = {y})";
hint: "set the line's position to 'top' or place it at a smaller 'y' index"
);
}
let line = if line.position == LinePosition::After
&& (!has_gutter || y + 1 == row_amount)
{
// Just place the line on top of the next row if
// there's no gutter and the line should be placed
// after the one with given index.
//
// Note that placing after the last row is also the same as
// just placing on the grid's bottom border, even with
// gutter.
Line {
index: y + 1,
position: LinePosition::Before,
..line
}
} else {
line
};
let y = line.index;
if hlines.len() <= y {
hlines.resize_with(y + 1, Vec::new);
}
hlines[y].push(line);
}
for (line_span, line) in pending_vlines {
let x = line.index;
if x > c {
bail!(line_span, "cannot place vertical line at invalid column {x}");
}
if x == c && line.position == LinePosition::After {
bail!(
line_span,
"cannot place vertical line at the 'end' position of the end border (x = {c})";
hint: "set the line's position to 'start' or place it at a smaller 'x' index"
);
}
let line =
if line.position == LinePosition::After && (!has_gutter || x + 1 == c) {
// Just place the line before the next column if
// there's no gutter and the line should be placed
// after the one with given index.
//
// Note that placing after the last column is also the
// same as just placing on the grid's end border, even
// with gutter.
Line {
index: x + 1,
position: LinePosition::Before,
..line
}
} else {
line
};
let x = line.index;
if vlines.len() <= x {
vlines.resize_with(x + 1, Vec::new);
}
vlines[x].push(line);
}
let header = header
.map(|mut header| {
// Repeat the gutter below a header (hence why we don't
// subtract 1 from the gutter case).
// Don't do this if there are no rows under the header.
if has_gutter {
// - 'header.end' is always 'last y + 1'. The header stops
// before that row.
// - Therefore, '2 * header.end' will be 2 * (last y + 1),
// which is the adjusted index of the row before which the
// header stops, meaning it will still stop right before it
// even with gutter thanks to the multiplication below.
// - This means that it will span all rows up to
// '2 * (last y + 1) - 1 = 2 * last y + 1', which equates
// to the index of the gutter row right below the header,
// which is what we want (that gutter spacing should be
// repeated across pages to maintain uniformity).
header.end *= 2;
// If the header occupies the entire grid, ensure we don't
// include an extra gutter row when it doesn't exist, since
// the last row of the header is at the very bottom,
// therefore '2 * last y + 1' is not a valid index.
let row_amount = (2 * row_amount).saturating_sub(1);
header.end = header.end.min(row_amount);
}
header
})
.map(|header| {
if repeat_header {
Repeatable::Repeated(header)
} else {
Repeatable::NotRepeated(header)
}
});
let footer = footer
.map(|(footer_end, footer_span, mut footer)| {
if footer_end != row_amount {
bail!(footer_span, "footer must end at the last row");
}
let header_end =
header.as_ref().map(Repeatable::unwrap).map(|header| header.end);
if has_gutter {
// Convert the footer's start index to post-gutter coordinates.
footer.start *= 2;
// Include the gutter right before the footer, unless there is
// none, or the gutter is already included in the header (no
// rows between the header and the footer).
if header_end.map_or(true, |header_end| header_end != footer.start) {
footer.start = footer.start.saturating_sub(1);
}
}
if header_end.is_some_and(|header_end| header_end > footer.start) {
bail!(footer_span, "header and footer must not have common rows");
}
Ok(footer)
})
.transpose()?
.map(|footer| {
if repeat_footer {
Repeatable::Repeated(footer)
} else {
Repeatable::NotRepeated(footer)
}
});
Ok(Self::new_internal(
tracks,
gutter,
vlines,
hlines,
header,
footer,
resolved_cells,
))
}
/// Generates the cell grid, given the tracks and resolved entries.
pub fn new_internal(
tracks: Axes<&[Sizing]>,
gutter: Axes<&[Sizing]>,
vlines: Vec<Vec<Line>>,
hlines: Vec<Vec<Line>>,
header: Option<Repeatable<Header>>,
footer: Option<Repeatable<Footer>>,
entries: Vec<Entry<'a>>,
) -> Self {
let mut cols = vec![];
let mut rows = vec![];
// Number of content columns: Always at least one.
let c = tracks.x.len().max(1);
// Number of content rows: At least as many as given, but also at least
// as many as needed to place each item.
let r = {
let len = entries.len();
let given = tracks.y.len();
let needed = len / c + (len % c).clamp(0, 1);
given.max(needed)
};
let has_gutter = gutter.any(|tracks| !tracks.is_empty());
let auto = Sizing::Auto;
let zero = Sizing::Rel(Rel::zero());
let get_or = |tracks: &[_], idx, default| {
tracks.get(idx).or(tracks.last()).copied().unwrap_or(default)
};
// Collect content and gutter columns.
for x in 0..c {
cols.push(get_or(tracks.x, x, auto));
if has_gutter {
cols.push(get_or(gutter.x, x, zero));
}
}
// Collect content and gutter rows.
for y in 0..r {
rows.push(get_or(tracks.y, y, auto));
if has_gutter {
rows.push(get_or(gutter.y, y, zero));
}
}
// Remove superfluous gutter tracks.
if has_gutter {
cols.pop();
rows.pop();
}
Self {
cols,
rows,
entries,
vlines,
hlines,
header,
footer,
has_gutter,
}
}
/// Get the grid entry in column `x` and row `y`.
///
/// Returns `None` if it's a gutter cell.
#[track_caller]
pub fn entry(&self, x: usize, y: usize) -> Option<&Entry<'a>> {
assert!(x < self.cols.len());
assert!(y < self.rows.len());
if self.has_gutter {
// Even columns and rows are children, odd ones are gutter.
if x % 2 == 0 && y % 2 == 0 {
let c = 1 + self.cols.len() / 2;
self.entries.get((y / 2) * c + x / 2)
} else {
None
}
} else {
let c = self.cols.len();
self.entries.get(y * c + x)
}
}
/// Get the content of the cell in column `x` and row `y`.
///
/// Returns `None` if it's a gutter cell or merged position.
#[track_caller]
pub fn cell(&self, x: usize, y: usize) -> Option<&Cell<'a>> {
self.entry(x, y).and_then(Entry::as_cell)
}
/// Returns the position of the parent cell of the grid entry at the given
/// position. It is guaranteed to have a non-gutter, non-merged cell at
/// the returned position, due to how the grid is built.
/// - If the entry at the given position is a cell, returns the given
/// position.
/// - If it is a merged cell, returns the parent cell's position.
/// - If it is a gutter cell, returns None.
#[track_caller]
pub fn parent_cell_position(&self, x: usize, y: usize) -> Option<Axes<usize>> {
self.entry(x, y).map(|entry| match entry {
Entry::Cell(_) => Axes::new(x, y),
Entry::Merged { parent } => {
let c = if self.has_gutter {
1 + self.cols.len() / 2
} else {
self.cols.len()
};
let factor = if self.has_gutter { 2 } else { 1 };
Axes::new(factor * (*parent % c), factor * (*parent / c))
}
})
}
/// Returns the position of the actual parent cell of a merged position,
/// even if the given position is gutter, in which case we return the
/// parent of the nearest adjacent content cell which could possibly span
/// the given gutter position. If the given position is not a gutter cell,
/// then this function will return the same as `parent_cell_position` would.
/// If the given position is a gutter cell, but no cell spans it, returns
/// `None`.
///
/// This is useful for lines. A line needs to check if a cell next to it
/// has a stroke override - even at a gutter position there could be a
/// stroke override, since a cell could be merged with two cells at both
/// ends of the gutter cell (e.g. to its left and to its right), and thus
/// that cell would impose a stroke under the gutter. This function allows
/// getting the position of that cell (which spans the given gutter
/// position, if it is gutter), if it exists; otherwise returns None (it's
/// gutter and no cell spans it).
#[track_caller]
pub fn effective_parent_cell_position(
&self,
x: usize,
y: usize,
) -> Option<Axes<usize>> {
if self.has_gutter {
// If (x, y) is a gutter cell, we skip it (skip a gutter column and
// row) to the nearest adjacent content cell, in the direction
// which merged cells grow toward (increasing x and increasing y),
// such that we can verify if that adjacent cell is merged with the
// gutter cell by checking if its parent would come before (x, y).
// Otherwise, no cell is merged with this gutter cell, and we
// return None.
self.parent_cell_position(x + x % 2, y + y % 2)
.filter(|&parent| parent.x <= x && parent.y <= y)
} else {
self.parent_cell_position(x, y)
}
}
/// Checks if the track with the given index is gutter.
/// Does not check if the index is a valid track.
#[inline]
pub fn is_gutter_track(&self, index: usize) -> bool {
self.has_gutter && index % 2 == 1
}
/// Returns the effective colspan of a cell, considering the gutters it
/// might span if the grid has gutters.
#[inline]
pub fn effective_colspan_of_cell(&self, cell: &Cell) -> usize {
if self.has_gutter {
2 * cell.colspan.get() - 1
} else {
cell.colspan.get()
}
}
/// Returns the effective rowspan of a cell, considering the gutters it
/// might span if the grid has gutters.
#[inline]
pub fn effective_rowspan_of_cell(&self, cell: &Cell) -> usize {
if self.has_gutter {
2 * cell.rowspan.get() - 1
} else {
cell.rowspan.get()
}
}
}
/// Given a cell's requested x and y, the vector with the resolved cell
/// positions, the `auto_index` counter (determines the position of the next
/// `(auto, auto)` cell) and the amount of columns in the grid, returns the
/// final index of this cell in the vector of resolved cells.
///
/// The `start_new_row` parameter is used to ensure that, if this cell is
/// fully automatically positioned, it should start a new, empty row. This is
/// useful for headers and footers, which must start at their own rows, without
/// interference from previous cells.
#[allow(clippy::too_many_arguments)]
fn resolve_cell_position(
cell_x: Smart<usize>,
cell_y: Smart<usize>,
colspan: usize,
rowspan: usize,
resolved_cells: &[Option<Entry>],
auto_index: &mut usize,
start_new_row: &mut bool,
columns: usize,
) -> HintedStrResult<usize> {
// Translates a (x, y) position to the equivalent index in the final cell vector.
// Errors if the position would be too large.
let cell_index = |x, y: usize| {
y.checked_mul(columns)
.and_then(|row_index| row_index.checked_add(x))
.ok_or_else(|| HintedString::from(eco_format!("cell position too large")))
};
match (cell_x, cell_y) {
// Fully automatic cell positioning. The cell did not
// request a coordinate.
(Smart::Auto, Smart::Auto) => {
// Let's find the first available position starting from the
// automatic position counter, searching in row-major order.
let mut resolved_index = *auto_index;
if *start_new_row {
resolved_index =
find_next_empty_row(resolved_cells, resolved_index, columns);
// Next cell won't have to start a new row if we just did that,
// in principle.
*start_new_row = false;
} else {
while let Some(Some(_)) = resolved_cells.get(resolved_index) {
// Skip any non-absent cell positions (`Some(None)`) to
// determine where this cell will be placed. An out of
// bounds position (thus `None`) is also a valid new
// position (only requires expanding the vector).
resolved_index += 1;
}
}
// Ensure the next cell with automatic position will be
// placed after this one (maybe not immediately after).
//
// The calculation below also affects the position of the upcoming
// automatically-positioned lines.
*auto_index = if colspan == columns {
// The cell occupies all columns, so no cells can be placed
// after it until all of its rows have been spanned.
resolved_index + colspan * rowspan
} else {
// The next cell will have to be placed at least after its
// spanned columns.
resolved_index + colspan
};
Ok(resolved_index)
}
// Cell has chosen at least its column.
(Smart::Custom(cell_x), cell_y) => {
if cell_x >= columns {
return Err(HintedString::from(eco_format!(
"cell could not be placed at invalid column {cell_x}"
)));
}
if let Smart::Custom(cell_y) = cell_y {
// Cell has chosen its exact position.
cell_index(cell_x, cell_y)
} else {
// Cell has only chosen its column.
// Let's find the first row which has that column available.
let mut resolved_y = 0;
while let Some(Some(_)) =
resolved_cells.get(cell_index(cell_x, resolved_y)?)
{
// Try each row until either we reach an absent position
// (`Some(None)`) or an out of bounds position (`None`),
// in which case we'd create a new row to place this cell in.
resolved_y += 1;
}
cell_index(cell_x, resolved_y)
}
}
// Cell has only chosen its row, not its column.
(Smart::Auto, Smart::Custom(cell_y)) => {
// Let's find the first column which has that row available.
let first_row_pos = cell_index(0, cell_y)?;
let last_row_pos = first_row_pos
.checked_add(columns)
.ok_or_else(|| eco_format!("cell position too large"))?;
(first_row_pos..last_row_pos)
.find(|possible_index| {
// Much like in the previous cases, we skip any occupied
// positions until we either reach an absent position
// (`Some(None)`) or an out of bounds position (`None`),
// in which case we can just expand the vector enough to
// place this cell. In either case, we found an available
// position.
!matches!(resolved_cells.get(*possible_index), Some(Some(_)))
})
.ok_or_else(|| {
eco_format!(
"cell could not be placed in row {cell_y} because it was full"
)
})
.hint("try specifying your cells in a different order")
}
}
}
/// Computes the index of the first cell in the next empty row in the grid,
/// starting with the given initial index.
fn find_next_empty_row(
resolved_cells: &[Option<Entry>],
initial_index: usize,
columns: usize,
) -> usize {
let mut resolved_index = initial_index.next_multiple_of(columns);
while resolved_cells
.get(resolved_index..resolved_index + columns)
.is_some_and(|row| row.iter().any(Option::is_some))
{
// Skip non-empty rows.
resolved_index += columns;
}
resolved_index
}
/// Fully merged rows under the cell of latest auto index indicate rowspans
/// occupying all columns, so we skip the auto index until the shortest rowspan
/// ends, such that, in the resulting row, we will be able to place an
/// automatically positioned cell - and, in particular, hlines under it. The
/// idea is that an auto hline will be placed after the shortest such rowspan.
/// Otherwise, the hline would just be placed under the first row of those
/// rowspans and disappear (except at the presence of column gutter).
fn skip_auto_index_through_fully_merged_rows(
resolved_cells: &[Option<Entry>],
auto_index: &mut usize,
columns: usize,
) {
// If the auto index isn't currently at the start of a row, that means
// there's still at least one auto position left in the row, ignoring
// cells with manual positions, so we wouldn't have a problem in placing
// further cells or, in this case, hlines here.
if *auto_index % columns == 0 {
while resolved_cells
.get(*auto_index..*auto_index + columns)
.is_some_and(|row| {
row.iter().all(|entry| matches!(entry, Some(Entry::Merged { .. })))
})
{
*auto_index += columns;
}
}
}