typst_library/layout/grid/
resolve.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
use std::num::NonZeroUsize;
use std::sync::Arc;

use ecow::eco_format;
use typst_library::diag::{
    bail, At, Hint, HintedStrResult, HintedString, SourceResult, Trace, Tracepoint,
};
use typst_library::engine::Engine;
use typst_library::foundations::{Content, Fold, Packed, Smart, StyleChain};
use typst_library::introspection::Locator;
use typst_library::layout::{
    Abs, Alignment, Axes, Celled, GridCell, GridChild, GridElem, GridItem, Length,
    OuterHAlignment, OuterVAlignment, Rel, ResolvedCelled, Sides, Sizing,
};
use typst_library::model::{TableCell, TableChild, TableElem, TableItem};
use typst_library::text::TextElem;
use typst_library::visualize::{Paint, Stroke};
use typst_library::Dir;

use typst_syntax::Span;
use typst_utils::NonZeroExt;

/// Convert a grid to a cell grid.
#[typst_macros::time(span = elem.span())]
pub fn grid_to_cellgrid<'a>(
    elem: &Packed<GridElem>,
    engine: &mut Engine,
    locator: Locator<'a>,
    styles: StyleChain,
) -> SourceResult<CellGrid<'a>> {
    let inset = elem.inset(styles);
    let align = elem.align(styles);
    let columns = elem.columns(styles);
    let rows = elem.rows(styles);
    let column_gutter = elem.column_gutter(styles);
    let row_gutter = elem.row_gutter(styles);
    let fill = elem.fill(styles);
    let stroke = elem.stroke(styles);

    let tracks = Axes::new(columns.0.as_slice(), rows.0.as_slice());
    let gutter = Axes::new(column_gutter.0.as_slice(), row_gutter.0.as_slice());
    // Use trace to link back to the grid when a specific cell errors
    let tracepoint = || Tracepoint::Call(Some(eco_format!("grid")));
    let resolve_item = |item: &GridItem| grid_item_to_resolvable(item, styles);
    let children = elem.children.iter().map(|child| match child {
        GridChild::Header(header) => ResolvableGridChild::Header {
            repeat: header.repeat(styles),
            span: header.span(),
            items: header.children.iter().map(resolve_item),
        },
        GridChild::Footer(footer) => ResolvableGridChild::Footer {
            repeat: footer.repeat(styles),
            span: footer.span(),
            items: footer.children.iter().map(resolve_item),
        },
        GridChild::Item(item) => {
            ResolvableGridChild::Item(grid_item_to_resolvable(item, styles))
        }
    });
    CellGrid::resolve(
        tracks,
        gutter,
        locator,
        children,
        fill,
        align,
        &inset,
        &stroke,
        engine,
        styles,
        elem.span(),
    )
    .trace(engine.world, tracepoint, elem.span())
}

/// Convert a table to a cell grid.
#[typst_macros::time(span = elem.span())]
pub fn table_to_cellgrid<'a>(
    elem: &Packed<TableElem>,
    engine: &mut Engine,
    locator: Locator<'a>,
    styles: StyleChain,
) -> SourceResult<CellGrid<'a>> {
    let inset = elem.inset(styles);
    let align = elem.align(styles);
    let columns = elem.columns(styles);
    let rows = elem.rows(styles);
    let column_gutter = elem.column_gutter(styles);
    let row_gutter = elem.row_gutter(styles);
    let fill = elem.fill(styles);
    let stroke = elem.stroke(styles);

    let tracks = Axes::new(columns.0.as_slice(), rows.0.as_slice());
    let gutter = Axes::new(column_gutter.0.as_slice(), row_gutter.0.as_slice());
    // Use trace to link back to the table when a specific cell errors
    let tracepoint = || Tracepoint::Call(Some(eco_format!("table")));
    let resolve_item = |item: &TableItem| table_item_to_resolvable(item, styles);
    let children = elem.children.iter().map(|child| match child {
        TableChild::Header(header) => ResolvableGridChild::Header {
            repeat: header.repeat(styles),
            span: header.span(),
            items: header.children.iter().map(resolve_item),
        },
        TableChild::Footer(footer) => ResolvableGridChild::Footer {
            repeat: footer.repeat(styles),
            span: footer.span(),
            items: footer.children.iter().map(resolve_item),
        },
        TableChild::Item(item) => {
            ResolvableGridChild::Item(table_item_to_resolvable(item, styles))
        }
    });
    CellGrid::resolve(
        tracks,
        gutter,
        locator,
        children,
        fill,
        align,
        &inset,
        &stroke,
        engine,
        styles,
        elem.span(),
    )
    .trace(engine.world, tracepoint, elem.span())
}

fn grid_item_to_resolvable(
    item: &GridItem,
    styles: StyleChain,
) -> ResolvableGridItem<Packed<GridCell>> {
    match item {
        GridItem::HLine(hline) => ResolvableGridItem::HLine {
            y: hline.y(styles),
            start: hline.start(styles),
            end: hline.end(styles),
            stroke: hline.stroke(styles),
            span: hline.span(),
            position: match hline.position(styles) {
                OuterVAlignment::Top => LinePosition::Before,
                OuterVAlignment::Bottom => LinePosition::After,
            },
        },
        GridItem::VLine(vline) => ResolvableGridItem::VLine {
            x: vline.x(styles),
            start: vline.start(styles),
            end: vline.end(styles),
            stroke: vline.stroke(styles),
            span: vline.span(),
            position: match vline.position(styles) {
                OuterHAlignment::Left if TextElem::dir_in(styles) == Dir::RTL => {
                    LinePosition::After
                }
                OuterHAlignment::Right if TextElem::dir_in(styles) == Dir::RTL => {
                    LinePosition::Before
                }
                OuterHAlignment::Start | OuterHAlignment::Left => LinePosition::Before,
                OuterHAlignment::End | OuterHAlignment::Right => LinePosition::After,
            },
        },
        GridItem::Cell(cell) => ResolvableGridItem::Cell(cell.clone()),
    }
}

fn table_item_to_resolvable(
    item: &TableItem,
    styles: StyleChain,
) -> ResolvableGridItem<Packed<TableCell>> {
    match item {
        TableItem::HLine(hline) => ResolvableGridItem::HLine {
            y: hline.y(styles),
            start: hline.start(styles),
            end: hline.end(styles),
            stroke: hline.stroke(styles),
            span: hline.span(),
            position: match hline.position(styles) {
                OuterVAlignment::Top => LinePosition::Before,
                OuterVAlignment::Bottom => LinePosition::After,
            },
        },
        TableItem::VLine(vline) => ResolvableGridItem::VLine {
            x: vline.x(styles),
            start: vline.start(styles),
            end: vline.end(styles),
            stroke: vline.stroke(styles),
            span: vline.span(),
            position: match vline.position(styles) {
                OuterHAlignment::Left if TextElem::dir_in(styles) == Dir::RTL => {
                    LinePosition::After
                }
                OuterHAlignment::Right if TextElem::dir_in(styles) == Dir::RTL => {
                    LinePosition::Before
                }
                OuterHAlignment::Start | OuterHAlignment::Left => LinePosition::Before,
                OuterHAlignment::End | OuterHAlignment::Right => LinePosition::After,
            },
        },
        TableItem::Cell(cell) => ResolvableGridItem::Cell(cell.clone()),
    }
}

impl ResolvableCell for Packed<TableCell> {
    fn resolve_cell<'a>(
        mut self,
        x: usize,
        y: usize,
        fill: &Option<Paint>,
        align: Smart<Alignment>,
        inset: Sides<Option<Rel<Length>>>,
        stroke: Sides<Option<Option<Arc<Stroke<Abs>>>>>,
        breakable: bool,
        locator: Locator<'a>,
        styles: StyleChain,
    ) -> Cell<'a> {
        let cell = &mut *self;
        let colspan = cell.colspan(styles);
        let rowspan = cell.rowspan(styles);
        let breakable = cell.breakable(styles).unwrap_or(breakable);
        let fill = cell.fill(styles).unwrap_or_else(|| fill.clone());

        let cell_stroke = cell.stroke(styles);
        let stroke_overridden =
            cell_stroke.as_ref().map(|side| matches!(side, Some(Some(_))));

        // Using a typical 'Sides' fold, an unspecified side loses to a
        // specified side. Additionally, when both are specified, an inner
        // None wins over the outer Some, and vice-versa. When both are
        // specified and Some, fold occurs, which, remarkably, leads to an Arc
        // clone.
        //
        // In the end, we flatten because, for layout purposes, an unspecified
        // cell stroke is the same as specifying 'none', so we equate the two
        // concepts.
        let stroke = cell_stroke.fold(stroke).map(Option::flatten);
        cell.push_x(Smart::Custom(x));
        cell.push_y(Smart::Custom(y));
        cell.push_fill(Smart::Custom(fill.clone()));
        cell.push_align(match align {
            Smart::Custom(align) => {
                Smart::Custom(cell.align(styles).map_or(align, |inner| inner.fold(align)))
            }
            // Don't fold if the table is using outer alignment. Use the
            // cell's alignment instead (which, in the end, will fold with
            // the outer alignment when it is effectively displayed).
            Smart::Auto => cell.align(styles),
        });
        cell.push_inset(Smart::Custom(
            cell.inset(styles).map_or(inset, |inner| inner.fold(inset)),
        ));
        cell.push_stroke(
            // Here we convert the resolved stroke to a regular stroke, however
            // with resolved units (that is, 'em' converted to absolute units).
            // We also convert any stroke unspecified by both the cell and the
            // outer stroke ('None' in the folded stroke) to 'none', that is,
            // all sides are present in the resulting Sides object accessible
            // by show rules on table cells.
            stroke.as_ref().map(|side| {
                Some(side.as_ref().map(|cell_stroke| {
                    Arc::new((**cell_stroke).clone().map(Length::from))
                }))
            }),
        );
        cell.push_breakable(Smart::Custom(breakable));
        Cell {
            body: self.pack(),
            locator,
            fill,
            colspan,
            rowspan,
            stroke,
            stroke_overridden,
            breakable,
        }
    }

    fn x(&self, styles: StyleChain) -> Smart<usize> {
        (**self).x(styles)
    }

    fn y(&self, styles: StyleChain) -> Smart<usize> {
        (**self).y(styles)
    }

    fn colspan(&self, styles: StyleChain) -> NonZeroUsize {
        (**self).colspan(styles)
    }

    fn rowspan(&self, styles: StyleChain) -> NonZeroUsize {
        (**self).rowspan(styles)
    }

    fn span(&self) -> Span {
        Packed::span(self)
    }
}

impl ResolvableCell for Packed<GridCell> {
    fn resolve_cell<'a>(
        mut self,
        x: usize,
        y: usize,
        fill: &Option<Paint>,
        align: Smart<Alignment>,
        inset: Sides<Option<Rel<Length>>>,
        stroke: Sides<Option<Option<Arc<Stroke<Abs>>>>>,
        breakable: bool,
        locator: Locator<'a>,
        styles: StyleChain,
    ) -> Cell<'a> {
        let cell = &mut *self;
        let colspan = cell.colspan(styles);
        let rowspan = cell.rowspan(styles);
        let breakable = cell.breakable(styles).unwrap_or(breakable);
        let fill = cell.fill(styles).unwrap_or_else(|| fill.clone());

        let cell_stroke = cell.stroke(styles);
        let stroke_overridden =
            cell_stroke.as_ref().map(|side| matches!(side, Some(Some(_))));

        // Using a typical 'Sides' fold, an unspecified side loses to a
        // specified side. Additionally, when both are specified, an inner
        // None wins over the outer Some, and vice-versa. When both are
        // specified and Some, fold occurs, which, remarkably, leads to an Arc
        // clone.
        //
        // In the end, we flatten because, for layout purposes, an unspecified
        // cell stroke is the same as specifying 'none', so we equate the two
        // concepts.
        let stroke = cell_stroke.fold(stroke).map(Option::flatten);
        cell.push_x(Smart::Custom(x));
        cell.push_y(Smart::Custom(y));
        cell.push_fill(Smart::Custom(fill.clone()));
        cell.push_align(match align {
            Smart::Custom(align) => {
                Smart::Custom(cell.align(styles).map_or(align, |inner| inner.fold(align)))
            }
            // Don't fold if the grid is using outer alignment. Use the
            // cell's alignment instead (which, in the end, will fold with
            // the outer alignment when it is effectively displayed).
            Smart::Auto => cell.align(styles),
        });
        cell.push_inset(Smart::Custom(
            cell.inset(styles).map_or(inset, |inner| inner.fold(inset)),
        ));
        cell.push_stroke(
            // Here we convert the resolved stroke to a regular stroke, however
            // with resolved units (that is, 'em' converted to absolute units).
            // We also convert any stroke unspecified by both the cell and the
            // outer stroke ('None' in the folded stroke) to 'none', that is,
            // all sides are present in the resulting Sides object accessible
            // by show rules on grid cells.
            stroke.as_ref().map(|side| {
                Some(side.as_ref().map(|cell_stroke| {
                    Arc::new((**cell_stroke).clone().map(Length::from))
                }))
            }),
        );
        cell.push_breakable(Smart::Custom(breakable));
        Cell {
            body: self.pack(),
            locator,
            fill,
            colspan,
            rowspan,
            stroke,
            stroke_overridden,
            breakable,
        }
    }

    fn x(&self, styles: StyleChain) -> Smart<usize> {
        (**self).x(styles)
    }

    fn y(&self, styles: StyleChain) -> Smart<usize> {
        (**self).y(styles)
    }

    fn colspan(&self, styles: StyleChain) -> NonZeroUsize {
        (**self).colspan(styles)
    }

    fn rowspan(&self, styles: StyleChain) -> NonZeroUsize {
        (**self).rowspan(styles)
    }

    fn span(&self) -> Span {
        Packed::span(self)
    }
}

/// Represents an explicit grid line (horizontal or vertical) specified by the
/// user.
pub struct Line {
    /// The index of the track after this line. This will be the index of the
    /// row a horizontal line is above of, or of the column right after a
    /// vertical line.
    ///
    /// Must be within `0..=tracks.len()` (where `tracks` is either `grid.cols`
    /// or `grid.rows`, ignoring gutter tracks, as appropriate).
    pub index: usize,
    /// The index of the track at which this line starts being drawn.
    /// This is the first column a horizontal line appears in, or the first row
    /// a vertical line appears in.
    ///
    /// Must be within `0..tracks.len()` minus gutter tracks.
    pub start: usize,
    /// The index after the last track through which the line is drawn.
    /// Thus, the line is drawn through tracks `start..end` (note that `end` is
    /// exclusive).
    ///
    /// Must be within `1..=tracks.len()` minus gutter tracks.
    /// `None` indicates the line should go all the way to the end.
    pub end: Option<NonZeroUsize>,
    /// The line's stroke. This is `None` when the line is explicitly used to
    /// override a previously specified line.
    pub stroke: Option<Arc<Stroke<Abs>>>,
    /// The line's position in relation to the track with its index.
    pub position: LinePosition,
}

/// A repeatable grid header. Starts at the first row.
pub struct Header {
    /// The index after the last row included in this header.
    pub end: usize,
}

/// A repeatable grid footer. Stops at the last row.
pub struct Footer {
    /// The first row included in this footer.
    pub start: usize,
}

/// A possibly repeatable grid object.
/// It still exists even when not repeatable, but must not have additional
/// considerations by grid layout, other than for consistency (such as making
/// a certain group of rows unbreakable).
pub enum Repeatable<T> {
    Repeated(T),
    NotRepeated(T),
}

impl<T> Repeatable<T> {
    /// Gets the value inside this repeatable, regardless of whether
    /// it repeats.
    pub fn unwrap(&self) -> &T {
        match self {
            Self::Repeated(repeated) => repeated,
            Self::NotRepeated(not_repeated) => not_repeated,
        }
    }

    /// Returns `Some` if the value is repeated, `None` otherwise.
    pub fn as_repeated(&self) -> Option<&T> {
        match self {
            Self::Repeated(repeated) => Some(repeated),
            Self::NotRepeated(_) => None,
        }
    }
}

/// Used for cell-like elements which are aware of their final properties in
/// the table, and may have property overrides.
pub trait ResolvableCell {
    /// Resolves the cell's fields, given its coordinates and default grid-wide
    /// fill, align, inset and stroke properties, plus the expected value of
    /// the `breakable` field.
    /// Returns a final Cell.
    #[allow(clippy::too_many_arguments)]
    fn resolve_cell<'a>(
        self,
        x: usize,
        y: usize,
        fill: &Option<Paint>,
        align: Smart<Alignment>,
        inset: Sides<Option<Rel<Length>>>,
        stroke: Sides<Option<Option<Arc<Stroke<Abs>>>>>,
        breakable: bool,
        locator: Locator<'a>,
        styles: StyleChain,
    ) -> Cell<'a>;

    /// Returns this cell's column override.
    fn x(&self, styles: StyleChain) -> Smart<usize>;

    /// Returns this cell's row override.
    fn y(&self, styles: StyleChain) -> Smart<usize>;

    /// The amount of columns spanned by this cell.
    fn colspan(&self, styles: StyleChain) -> NonZeroUsize;

    /// The amount of rows spanned by this cell.
    fn rowspan(&self, styles: StyleChain) -> NonZeroUsize;

    /// The cell's span, for errors.
    fn span(&self) -> Span;
}

/// A grid item, possibly affected by automatic cell positioning. Can be either
/// a line or a cell.
pub enum ResolvableGridItem<T: ResolvableCell> {
    /// A horizontal line in the grid.
    HLine {
        /// The row above which the horizontal line is drawn.
        y: Smart<usize>,
        start: usize,
        end: Option<NonZeroUsize>,
        stroke: Option<Arc<Stroke<Abs>>>,
        /// The span of the corresponding line element.
        span: Span,
        /// The line's position. "before" here means on top of row `y`, while
        /// "after" means below it.
        position: LinePosition,
    },
    /// A vertical line in the grid.
    VLine {
        /// The column before which the vertical line is drawn.
        x: Smart<usize>,
        start: usize,
        end: Option<NonZeroUsize>,
        stroke: Option<Arc<Stroke<Abs>>>,
        /// The span of the corresponding line element.
        span: Span,
        /// The line's position. "before" here means to the left of column `x`,
        /// while "after" means to its right (both considering LTR).
        position: LinePosition,
    },
    /// A cell in the grid.
    Cell(T),
}

/// Represents a cell in CellGrid, to be laid out by GridLayouter.
pub struct Cell<'a> {
    /// The cell's body.
    pub body: Content,
    /// The cell's locator.
    pub locator: Locator<'a>,
    /// The cell's fill.
    pub fill: Option<Paint>,
    /// The amount of columns spanned by the cell.
    pub colspan: NonZeroUsize,
    /// The amount of rows spanned by the cell.
    pub rowspan: NonZeroUsize,
    /// The cell's stroke.
    ///
    /// We use an Arc to avoid unnecessary space usage when all sides are the
    /// same, or when the strokes come from a common source.
    pub stroke: Sides<Option<Arc<Stroke<Abs>>>>,
    /// Which stroke sides were explicitly overridden by the cell, over the
    /// grid's global stroke setting.
    ///
    /// This is used to define whether or not this cell's stroke sides should
    /// have priority over adjacent cells' stroke sides, if those don't
    /// override their own stroke properties (and thus have less priority when
    /// defining with which stroke to draw grid lines around this cell).
    pub stroke_overridden: Sides<bool>,
    /// Whether rows spanned by this cell can be placed in different pages.
    /// By default, a cell spanning only fixed-size rows is unbreakable, while
    /// a cell spanning at least one `auto`-sized row is breakable.
    pub breakable: bool,
}

impl<'a> Cell<'a> {
    /// Create a simple cell given its body and its locator.
    pub fn new(body: Content, locator: Locator<'a>) -> Self {
        Self {
            body,
            locator,
            fill: None,
            colspan: NonZeroUsize::ONE,
            rowspan: NonZeroUsize::ONE,
            stroke: Sides::splat(None),
            stroke_overridden: Sides::splat(false),
            breakable: true,
        }
    }
}

/// Indicates whether the line should be drawn before or after the track with
/// its index. This is mostly only relevant when gutter is used, since, then,
/// the position after a track is not the same as before the next
/// non-gutter track.
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum LinePosition {
    /// The line should be drawn before its track (e.g. hline on top of a row).
    Before,
    /// The line should be drawn after its track (e.g. hline below a row).
    After,
}

/// A grid entry.
pub enum Entry<'a> {
    /// An entry which holds a cell.
    Cell(Cell<'a>),
    /// An entry which is merged with another cell.
    Merged {
        /// The index of the cell this entry is merged with.
        parent: usize,
    },
}

impl<'a> Entry<'a> {
    /// Obtains the cell inside this entry, if this is not a merged cell.
    pub fn as_cell(&self) -> Option<&Cell<'a>> {
        match self {
            Self::Cell(cell) => Some(cell),
            Self::Merged { .. } => None,
        }
    }
}

/// Any grid child, which can be either a header or an item.
pub enum ResolvableGridChild<T: ResolvableCell, I> {
    Header { repeat: bool, span: Span, items: I },
    Footer { repeat: bool, span: Span, items: I },
    Item(ResolvableGridItem<T>),
}

/// A grid of cells, including the columns, rows, and cell data.
pub struct CellGrid<'a> {
    /// The grid cells.
    pub entries: Vec<Entry<'a>>,
    /// The column tracks including gutter tracks.
    pub cols: Vec<Sizing>,
    /// The row tracks including gutter tracks.
    pub rows: Vec<Sizing>,
    /// The vertical lines before each column, or on the end border.
    /// Gutter columns are not included.
    /// Contains up to 'cols_without_gutter.len() + 1' vectors of lines.
    pub vlines: Vec<Vec<Line>>,
    /// The horizontal lines on top of each row, or on the bottom border.
    /// Gutter rows are not included.
    /// Contains up to 'rows_without_gutter.len() + 1' vectors of lines.
    pub hlines: Vec<Vec<Line>>,
    /// The repeatable header of this grid.
    pub header: Option<Repeatable<Header>>,
    /// The repeatable footer of this grid.
    pub footer: Option<Repeatable<Footer>>,
    /// Whether this grid has gutters.
    pub has_gutter: bool,
}

impl<'a> CellGrid<'a> {
    /// Generates the cell grid, given the tracks and cells.
    pub fn new(
        tracks: Axes<&[Sizing]>,
        gutter: Axes<&[Sizing]>,
        cells: impl IntoIterator<Item = Cell<'a>>,
    ) -> Self {
        let entries = cells.into_iter().map(Entry::Cell).collect();
        Self::new_internal(tracks, gutter, vec![], vec![], None, None, entries)
    }

    /// Resolves and positions all cells in the grid before creating it.
    /// Allows them to keep track of their final properties and positions
    /// and adjust their fields accordingly.
    /// Cells must implement Clone as they will be owned. Additionally, they
    /// must implement Default in order to fill positions in the grid which
    /// weren't explicitly specified by the user with empty cells.
    #[allow(clippy::too_many_arguments)]
    pub fn resolve<T, C, I>(
        tracks: Axes<&[Sizing]>,
        gutter: Axes<&[Sizing]>,
        locator: Locator<'a>,
        children: C,
        fill: &Celled<Option<Paint>>,
        align: &Celled<Smart<Alignment>>,
        inset: &Celled<Sides<Option<Rel<Length>>>>,
        stroke: &ResolvedCelled<Sides<Option<Option<Arc<Stroke>>>>>,
        engine: &mut Engine,
        styles: StyleChain,
        span: Span,
    ) -> SourceResult<Self>
    where
        T: ResolvableCell + Default,
        I: Iterator<Item = ResolvableGridItem<T>>,
        C: IntoIterator<Item = ResolvableGridChild<T, I>>,
        C::IntoIter: ExactSizeIterator,
    {
        let mut locator = locator.split();

        // Number of content columns: Always at least one.
        let c = tracks.x.len().max(1);

        // Lists of lines.
        // Horizontal lines are only pushed later to be able to check for row
        // validity, since the amount of rows isn't known until all items were
        // analyzed in the for loop below.
        // We keep their spans so we can report errors later.
        // The additional boolean indicates whether the hline had an automatic
        // 'y' index, and is used to change the index of hlines at the top of a
        // header or footer.
        let mut pending_hlines: Vec<(Span, Line, bool)> = vec![];

        // For consistency, only push vertical lines later as well.
        let mut pending_vlines: Vec<(Span, Line)> = vec![];
        let has_gutter = gutter.any(|tracks| !tracks.is_empty());

        let mut header: Option<Header> = None;
        let mut repeat_header = false;

        // Stores where the footer is supposed to end, its span, and the
        // actual footer structure.
        let mut footer: Option<(usize, Span, Footer)> = None;
        let mut repeat_footer = false;

        // Resolves the breakability of a cell. Cells that span at least one
        // auto-sized row or gutter are considered breakable.
        let resolve_breakable = |y, rowspan| {
            let auto = Sizing::Auto;
            let zero = Sizing::Rel(Rel::zero());
            tracks
                .y
                .iter()
                .chain(std::iter::repeat(tracks.y.last().unwrap_or(&auto)))
                .skip(y)
                .take(rowspan)
                .any(|row| row == &Sizing::Auto)
                || gutter
                    .y
                    .iter()
                    .chain(std::iter::repeat(gutter.y.last().unwrap_or(&zero)))
                    .skip(y)
                    .take(rowspan - 1)
                    .any(|row_gutter| row_gutter == &Sizing::Auto)
        };

        // We can't just use the cell's index in the 'cells' vector to
        // determine its automatic position, since cells could have arbitrary
        // positions, so the position of a cell in 'cells' can differ from its
        // final position in 'resolved_cells' (see below).
        // Therefore, we use a counter, 'auto_index', to determine the position
        // of the next cell with (x: auto, y: auto). It is only stepped when
        // a cell with (x: auto, y: auto), usually the vast majority, is found.
        let mut auto_index: usize = 0;

        // We have to rebuild the grid to account for arbitrary positions.
        // Create at least 'children.len()' positions, since there could be at
        // least 'children.len()' cells (if no explicit lines were specified),
        // even though some of them might be placed in arbitrary positions and
        // thus cause the grid to expand.
        // Additionally, make sure we allocate up to the next multiple of 'c',
        // since each row will have 'c' cells, even if the last few cells
        // weren't explicitly specified by the user.
        // We apply '% c' twice so that the amount of cells potentially missing
        // is zero when 'children.len()' is already a multiple of 'c' (thus
        // 'children.len() % c' would be zero).
        let children = children.into_iter();
        let Some(child_count) = children.len().checked_add((c - children.len() % c) % c)
        else {
            bail!(span, "too many cells or lines were given")
        };
        let mut resolved_cells: Vec<Option<Entry>> = Vec::with_capacity(child_count);
        for child in children {
            let mut is_header = false;
            let mut is_footer = false;
            let mut child_start = usize::MAX;
            let mut child_end = 0;
            let mut child_span = Span::detached();
            let mut start_new_row = false;
            let mut first_index_of_top_hlines = usize::MAX;
            let mut first_index_of_non_top_hlines = usize::MAX;

            let (header_footer_items, simple_item) = match child {
                ResolvableGridChild::Header { repeat, span, items, .. } => {
                    if header.is_some() {
                        bail!(span, "cannot have more than one header");
                    }

                    is_header = true;
                    child_span = span;
                    repeat_header = repeat;

                    // If any cell in the header is automatically positioned,
                    // have it skip to the next row. This is to avoid having a
                    // header after a partially filled row just add cells to
                    // that row instead of starting a new one.
                    // FIXME: Revise this approach when headers can start from
                    // arbitrary rows.
                    start_new_row = true;

                    // Any hlines at the top of the header will start at this
                    // index.
                    first_index_of_top_hlines = pending_hlines.len();

                    (Some(items), None)
                }
                ResolvableGridChild::Footer { repeat, span, items, .. } => {
                    if footer.is_some() {
                        bail!(span, "cannot have more than one footer");
                    }

                    is_footer = true;
                    child_span = span;
                    repeat_footer = repeat;

                    // If any cell in the footer is automatically positioned,
                    // have it skip to the next row. This is to avoid having a
                    // footer after a partially filled row just add cells to
                    // that row instead of starting a new one.
                    start_new_row = true;

                    // Any hlines at the top of the footer will start at this
                    // index.
                    first_index_of_top_hlines = pending_hlines.len();

                    (Some(items), None)
                }
                ResolvableGridChild::Item(item) => (None, Some(item)),
            };

            let items = header_footer_items
                .into_iter()
                .flatten()
                .chain(simple_item.into_iter());
            for item in items {
                let cell = match item {
                    ResolvableGridItem::HLine {
                        y,
                        start,
                        end,
                        stroke,
                        span,
                        position,
                    } => {
                        let has_auto_y = y.is_auto();
                        let y = y.unwrap_or_else(|| {
                            // Avoid placing the hline inside consecutive
                            // rowspans occupying all columns, as it'd just
                            // disappear, at least when there's no column
                            // gutter.
                            skip_auto_index_through_fully_merged_rows(
                                &resolved_cells,
                                &mut auto_index,
                                c,
                            );

                            // When no 'y' is specified for the hline, we place
                            // it under the latest automatically positioned
                            // cell.
                            // The current value of the auto index is always
                            // the index of the latest automatically positioned
                            // cell placed plus one (that's what we do in
                            // 'resolve_cell_position'), so we subtract 1 to
                            // get that cell's index, and place the hline below
                            // its row. The exception is when the auto_index is
                            // 0, meaning no automatically positioned cell was
                            // placed yet. In that case, we place the hline at
                            // the top of the table.
                            //
                            // Exceptionally, the hline will be placed before
                            // the minimum auto index if the current auto index
                            // from previous iterations is smaller than the
                            // minimum it should have for the current grid
                            // child. Effectively, this means that a hline at
                            // the start of a header will always appear above
                            // that header's first row. Similarly for footers.
                            auto_index
                                .checked_sub(1)
                                .map_or(0, |last_auto_index| last_auto_index / c + 1)
                        });
                        if end.is_some_and(|end| end.get() < start) {
                            bail!(span, "line cannot end before it starts");
                        }
                        let line = Line { index: y, start, end, stroke, position };

                        // Since the amount of rows is dynamic, delay placing
                        // hlines until after all cells were placed so we can
                        // properly verify if they are valid. Note that we
                        // can't place hlines even if we already know they
                        // would be in a valid row, since it's possible that we
                        // pushed pending hlines in the same row as this one in
                        // previous iterations, and we need to ensure that
                        // hlines from previous iterations are pushed to the
                        // final vector of hlines first - the order of hlines
                        // must be kept, as this matters when determining which
                        // one "wins" in case of conflict. Pushing the current
                        // hline before we push pending hlines later would
                        // change their order!
                        pending_hlines.push((span, line, has_auto_y));
                        continue;
                    }
                    ResolvableGridItem::VLine {
                        x,
                        start,
                        end,
                        stroke,
                        span,
                        position,
                    } => {
                        let x = x.unwrap_or_else(|| {
                            // When no 'x' is specified for the vline, we place
                            // it after the latest automatically positioned
                            // cell.
                            // The current value of the auto index is always
                            // the index of the latest automatically positioned
                            // cell placed plus one (that's what we do in
                            // 'resolve_cell_position'), so we subtract 1 to
                            // get that cell's index, and place the vline after
                            // its column. The exception is when the auto_index
                            // is 0, meaning no automatically positioned cell
                            // was placed yet. In that case, we place the vline
                            // to the left of the table.
                            //
                            // Exceptionally, a vline is also placed to the
                            // left of the table if we should start a new row
                            // for the next automatically positioned cell.
                            // For example, this means that a vline at
                            // the beginning of a header will be placed to its
                            // left rather than after the previous
                            // automatically positioned cell. Same for footers.
                            auto_index
                                .checked_sub(1)
                                .filter(|_| !start_new_row)
                                .map_or(0, |last_auto_index| last_auto_index % c + 1)
                        });
                        if end.is_some_and(|end| end.get() < start) {
                            bail!(span, "line cannot end before it starts");
                        }
                        let line = Line { index: x, start, end, stroke, position };

                        // For consistency with hlines, we only push vlines to
                        // the final vector of vlines after processing every
                        // cell.
                        pending_vlines.push((span, line));
                        continue;
                    }
                    ResolvableGridItem::Cell(cell) => cell,
                };
                let cell_span = cell.span();
                let colspan = cell.colspan(styles).get();
                let rowspan = cell.rowspan(styles).get();
                // Let's calculate the cell's final position based on its
                // requested position.
                let resolved_index = {
                    let cell_x = cell.x(styles);
                    let cell_y = cell.y(styles);
                    resolve_cell_position(
                        cell_x,
                        cell_y,
                        colspan,
                        rowspan,
                        &resolved_cells,
                        &mut auto_index,
                        &mut start_new_row,
                        c,
                    )
                    .at(cell_span)?
                };
                let x = resolved_index % c;
                let y = resolved_index / c;

                if colspan > c - x {
                    bail!(
                        cell_span,
                        "cell's colspan would cause it to exceed the available column(s)";
                        hint: "try placing the cell in another position or reducing its colspan"
                    )
                }

                let Some(largest_index) = c
                    .checked_mul(rowspan - 1)
                    .and_then(|full_rowspan_offset| {
                        resolved_index.checked_add(full_rowspan_offset)
                    })
                    .and_then(|last_row_pos| last_row_pos.checked_add(colspan - 1))
                else {
                    bail!(
                        cell_span,
                        "cell would span an exceedingly large position";
                        hint: "try reducing the cell's rowspan or colspan"
                    )
                };

                // Let's resolve the cell so it can determine its own fields
                // based on its final position.
                let cell = cell.resolve_cell(
                    x,
                    y,
                    &fill.resolve(engine, styles, x, y)?,
                    align.resolve(engine, styles, x, y)?,
                    inset.resolve(engine, styles, x, y)?,
                    stroke.resolve(engine, styles, x, y)?,
                    resolve_breakable(y, rowspan),
                    locator.next(&cell_span),
                    styles,
                );

                if largest_index >= resolved_cells.len() {
                    // Ensure the length of the vector of resolved cells is
                    // always a multiple of 'c' by pushing full rows every
                    // time. Here, we add enough absent positions (later
                    // converted to empty cells) to ensure the last row in the
                    // new vector length is completely filled. This is
                    // necessary so that those positions, even if not
                    // explicitly used at the end, are eventually susceptible
                    // to show rules and receive grid styling, as they will be
                    // resolved as empty cells in a second loop below.
                    let Some(new_len) = largest_index
                        .checked_add(1)
                        .and_then(|new_len| new_len.checked_add((c - new_len % c) % c))
                    else {
                        bail!(cell_span, "cell position too large")
                    };

                    // Here, the cell needs to be placed in a position which
                    // doesn't exist yet in the grid (out of bounds). We will
                    // add enough absent positions for this to be possible.
                    // They must be absent as no cells actually occupy them
                    // (they can be overridden later); however, if no cells
                    // occupy them as we finish building the grid, then such
                    // positions will be replaced by empty cells.
                    resolved_cells.resize_with(new_len, || None);
                }

                // The vector is large enough to contain the cell, so we can
                // just index it directly to access the position it will be
                // placed in. However, we still need to ensure we won't try to
                // place a cell where there already is one.
                let slot = &mut resolved_cells[resolved_index];
                if slot.is_some() {
                    bail!(
                        cell_span,
                        "attempted to place a second cell at column {x}, row {y}";
                        hint: "try specifying your cells in a different order"
                    );
                }

                *slot = Some(Entry::Cell(cell));

                // Now, if the cell spans more than one row or column, we fill
                // the spanned positions in the grid with Entry::Merged
                // pointing to the original cell as its parent.
                for rowspan_offset in 0..rowspan {
                    let spanned_y = y + rowspan_offset;
                    let first_row_index = resolved_index + c * rowspan_offset;
                    for (colspan_offset, slot) in resolved_cells[first_row_index..]
                        [..colspan]
                        .iter_mut()
                        .enumerate()
                    {
                        let spanned_x = x + colspan_offset;
                        if spanned_x == x && spanned_y == y {
                            // This is the parent cell.
                            continue;
                        }
                        if slot.is_some() {
                            bail!(
                                cell_span,
                                "cell would span a previously placed cell at column {spanned_x}, row {spanned_y}";
                                hint: "try specifying your cells in a different order or reducing the cell's rowspan or colspan"
                            )
                        }
                        *slot = Some(Entry::Merged { parent: resolved_index });
                    }
                }

                if is_header || is_footer {
                    // Ensure each cell in a header or footer is fully
                    // contained within it.
                    child_start = child_start.min(y);
                    child_end = child_end.max(y + rowspan);

                    if start_new_row && child_start <= auto_index.div_ceil(c) {
                        // No need to start a new row as we already include
                        // the row of the next automatically positioned cell in
                        // the header or footer.
                        start_new_row = false;
                    }

                    if !start_new_row {
                        // From now on, upcoming hlines won't be at the top of
                        // the child, as the first automatically positioned
                        // cell was placed.
                        first_index_of_non_top_hlines =
                            first_index_of_non_top_hlines.min(pending_hlines.len());
                    }
                }
            }

            if (is_header || is_footer) && child_start == usize::MAX {
                // Empty header/footer: consider the header/footer to be
                // at the next empty row after the latest auto index.
                auto_index = find_next_empty_row(&resolved_cells, auto_index, c);
                child_start = auto_index.div_ceil(c);
                child_end = child_start + 1;

                if resolved_cells.len() <= c * child_start {
                    // Ensure the automatically chosen row actually exists.
                    resolved_cells.resize_with(c * (child_start + 1), || None);
                }
            }

            if is_header {
                if child_start != 0 {
                    bail!(
                        child_span,
                        "header must start at the first row";
                        hint: "remove any rows before the header"
                    );
                }

                header = Some(Header {
                    // Later on, we have to correct this number in case there
                    // is gutter. But only once all cells have been analyzed
                    // and the header has fully expanded in the fixup loop
                    // below.
                    end: child_end,
                });
            }

            if is_footer {
                // Only check if the footer is at the end later, once we know
                // the final amount of rows.
                footer = Some((
                    child_end,
                    child_span,
                    Footer {
                        // Later on, we have to correct this number in case there
                        // is gutter, but only once all cells have been analyzed
                        // and the header's and footer's exact boundaries are
                        // known. That is because the gutter row immediately
                        // before the footer might not be included as part of
                        // the footer if it is contained within the header.
                        start: child_start,
                    },
                ));
            }

            if is_header || is_footer {
                let amount_hlines = pending_hlines.len();
                for (_, top_hline, has_auto_y) in pending_hlines
                    .get_mut(
                        first_index_of_top_hlines
                            ..first_index_of_non_top_hlines.min(amount_hlines),
                    )
                    .unwrap_or(&mut [])
                {
                    if *has_auto_y {
                        // Move this hline to the top of the child, as it was
                        // placed before the first automatically positioned cell
                        // and had an automatic index.
                        top_hline.index = child_start;
                    }
                }

                // Next automatically positioned cell goes under this header.
                // FIXME: Consider only doing this if the header has any fully
                // automatically positioned cells. Otherwise,
                // `resolve_cell_position` should be smart enough to skip
                // upcoming headers.
                // Additionally, consider that cells with just an 'x' override
                // could end up going too far back and making previous
                // non-header rows into header rows (maybe they should be
                // placed at the first row that is fully empty or something).
                // Nothing we can do when both 'x' and 'y' were overridden, of
                // course.
                // None of the above are concerns for now, as headers must
                // start at the first row.
                auto_index = auto_index.max(c * child_end);
            }
        }

        // If the user specified cells occupying less rows than the given rows,
        // we shall expand the grid so that it has at least the given amount of
        // rows.
        let Some(expected_total_cells) = c.checked_mul(tracks.y.len()) else {
            bail!(span, "too many rows were specified");
        };
        let missing_cells = expected_total_cells.saturating_sub(resolved_cells.len());

        // Fixup phase (final step in cell grid generation):
        // 1. Replace absent entries by resolved empty cells, and produce a
        // vector of 'Entry' from 'Option<Entry>'.
        // 2. Add enough empty cells to the end of the grid such that it has at
        // least the given amount of rows.
        // 3. If any cells were added to the header's rows after the header's
        // creation, ensure the header expands enough to accommodate them
        // across all of their spanned rows. Same for the footer.
        // 4. If any cells before the footer try to span it, error.
        let resolved_cells = resolved_cells
            .into_iter()
            .chain(std::iter::repeat_with(|| None).take(missing_cells))
            .enumerate()
            .map(|(i, cell)| {
                if let Some(cell) = cell {
                    if let Some(parent_cell) = cell.as_cell() {
                        if let Some(header) = &mut header
                        {
                            let y = i / c;
                            if y < header.end {
                                // Ensure the header expands enough such that
                                // all cells inside it, even those added later,
                                // are fully contained within the header.
                                // FIXME: check if start < y < end when start can
                                // be != 0.
                                // FIXME: when start can be != 0, decide what
                                // happens when a cell after the header placed
                                // above it tries to span the header (either
                                // error or expand upwards).
                                header.end = header.end.max(y + parent_cell.rowspan.get());
                            }
                        }

                        if let Some((end, footer_span, footer)) = &mut footer {
                            let x = i % c;
                            let y = i / c;
                            let cell_end = y + parent_cell.rowspan.get();
                            if y < footer.start && cell_end > footer.start {
                                // Don't allow a cell before the footer to span
                                // it. Surely, we could move the footer to
                                // start at where this cell starts, so this is
                                // more of a design choice, as it's unlikely
                                // for the user to intentionally include a cell
                                // before the footer spanning it but not
                                // being repeated with it.
                                bail!(
                                    *footer_span,
                                    "footer would conflict with a cell placed before it at column {x} row {y}";
                                    hint: "try reducing that cell's rowspan or moving the footer"
                                );
                            }
                            if y >= footer.start && y < *end {
                                // Expand the footer to include all rows
                                // spanned by this cell, as it is inside the
                                // footer.
                                *end = (*end).max(cell_end);
                            }
                        }
                    }

                    Ok(cell)
                } else {
                    let x = i % c;
                    let y = i / c;

                    // Ensure all absent entries are affected by show rules and
                    // grid styling by turning them into resolved empty cells.
                    let new_cell = T::default().resolve_cell(
                        x,
                        y,
                        &fill.resolve(engine, styles, x, y)?,
                        align.resolve(engine, styles, x, y)?,
                        inset.resolve(engine, styles, x, y)?,
                        stroke.resolve(engine, styles, x, y)?,
                        resolve_breakable(y, 1),
                        locator.next(&()),
                        styles,
                    );
                    Ok(Entry::Cell(new_cell))
                }
            })
            .collect::<SourceResult<Vec<Entry>>>()?;

        // Populate the final lists of lines.
        // For each line type (horizontal or vertical), we keep a vector for
        // every group of lines with the same index.
        let mut vlines: Vec<Vec<Line>> = vec![];
        let mut hlines: Vec<Vec<Line>> = vec![];
        let row_amount = resolved_cells.len().div_ceil(c);

        for (line_span, line, _) in pending_hlines {
            let y = line.index;
            if y > row_amount {
                bail!(line_span, "cannot place horizontal line at invalid row {y}");
            }
            if y == row_amount && line.position == LinePosition::After {
                bail!(
                    line_span,
                    "cannot place horizontal line at the 'bottom' position of the bottom border (y = {y})";
                    hint: "set the line's position to 'top' or place it at a smaller 'y' index"
                );
            }
            let line = if line.position == LinePosition::After
                && (!has_gutter || y + 1 == row_amount)
            {
                // Just place the line on top of the next row if
                // there's no gutter and the line should be placed
                // after the one with given index.
                //
                // Note that placing after the last row is also the same as
                // just placing on the grid's bottom border, even with
                // gutter.
                Line {
                    index: y + 1,
                    position: LinePosition::Before,
                    ..line
                }
            } else {
                line
            };
            let y = line.index;

            if hlines.len() <= y {
                hlines.resize_with(y + 1, Vec::new);
            }
            hlines[y].push(line);
        }

        for (line_span, line) in pending_vlines {
            let x = line.index;
            if x > c {
                bail!(line_span, "cannot place vertical line at invalid column {x}");
            }
            if x == c && line.position == LinePosition::After {
                bail!(
                    line_span,
                    "cannot place vertical line at the 'end' position of the end border (x = {c})";
                    hint: "set the line's position to 'start' or place it at a smaller 'x' index"
                );
            }
            let line =
                if line.position == LinePosition::After && (!has_gutter || x + 1 == c) {
                    // Just place the line before the next column if
                    // there's no gutter and the line should be placed
                    // after the one with given index.
                    //
                    // Note that placing after the last column is also the
                    // same as just placing on the grid's end border, even
                    // with gutter.
                    Line {
                        index: x + 1,
                        position: LinePosition::Before,
                        ..line
                    }
                } else {
                    line
                };
            let x = line.index;

            if vlines.len() <= x {
                vlines.resize_with(x + 1, Vec::new);
            }
            vlines[x].push(line);
        }

        let header = header
            .map(|mut header| {
                // Repeat the gutter below a header (hence why we don't
                // subtract 1 from the gutter case).
                // Don't do this if there are no rows under the header.
                if has_gutter {
                    // - 'header.end' is always 'last y + 1'. The header stops
                    // before that row.
                    // - Therefore, '2 * header.end' will be 2 * (last y + 1),
                    // which is the adjusted index of the row before which the
                    // header stops, meaning it will still stop right before it
                    // even with gutter thanks to the multiplication below.
                    // - This means that it will span all rows up to
                    // '2 * (last y + 1) - 1 = 2 * last y + 1', which equates
                    // to the index of the gutter row right below the header,
                    // which is what we want (that gutter spacing should be
                    // repeated across pages to maintain uniformity).
                    header.end *= 2;

                    // If the header occupies the entire grid, ensure we don't
                    // include an extra gutter row when it doesn't exist, since
                    // the last row of the header is at the very bottom,
                    // therefore '2 * last y + 1' is not a valid index.
                    let row_amount = (2 * row_amount).saturating_sub(1);
                    header.end = header.end.min(row_amount);
                }
                header
            })
            .map(|header| {
                if repeat_header {
                    Repeatable::Repeated(header)
                } else {
                    Repeatable::NotRepeated(header)
                }
            });

        let footer = footer
            .map(|(footer_end, footer_span, mut footer)| {
                if footer_end != row_amount {
                    bail!(footer_span, "footer must end at the last row");
                }

                let header_end =
                    header.as_ref().map(Repeatable::unwrap).map(|header| header.end);

                if has_gutter {
                    // Convert the footer's start index to post-gutter coordinates.
                    footer.start *= 2;

                    // Include the gutter right before the footer, unless there is
                    // none, or the gutter is already included in the header (no
                    // rows between the header and the footer).
                    if header_end.map_or(true, |header_end| header_end != footer.start) {
                        footer.start = footer.start.saturating_sub(1);
                    }
                }

                if header_end.is_some_and(|header_end| header_end > footer.start) {
                    bail!(footer_span, "header and footer must not have common rows");
                }

                Ok(footer)
            })
            .transpose()?
            .map(|footer| {
                if repeat_footer {
                    Repeatable::Repeated(footer)
                } else {
                    Repeatable::NotRepeated(footer)
                }
            });

        Ok(Self::new_internal(
            tracks,
            gutter,
            vlines,
            hlines,
            header,
            footer,
            resolved_cells,
        ))
    }

    /// Generates the cell grid, given the tracks and resolved entries.
    pub fn new_internal(
        tracks: Axes<&[Sizing]>,
        gutter: Axes<&[Sizing]>,
        vlines: Vec<Vec<Line>>,
        hlines: Vec<Vec<Line>>,
        header: Option<Repeatable<Header>>,
        footer: Option<Repeatable<Footer>>,
        entries: Vec<Entry<'a>>,
    ) -> Self {
        let mut cols = vec![];
        let mut rows = vec![];

        // Number of content columns: Always at least one.
        let c = tracks.x.len().max(1);

        // Number of content rows: At least as many as given, but also at least
        // as many as needed to place each item.
        let r = {
            let len = entries.len();
            let given = tracks.y.len();
            let needed = len / c + (len % c).clamp(0, 1);
            given.max(needed)
        };

        let has_gutter = gutter.any(|tracks| !tracks.is_empty());
        let auto = Sizing::Auto;
        let zero = Sizing::Rel(Rel::zero());
        let get_or = |tracks: &[_], idx, default| {
            tracks.get(idx).or(tracks.last()).copied().unwrap_or(default)
        };

        // Collect content and gutter columns.
        for x in 0..c {
            cols.push(get_or(tracks.x, x, auto));
            if has_gutter {
                cols.push(get_or(gutter.x, x, zero));
            }
        }

        // Collect content and gutter rows.
        for y in 0..r {
            rows.push(get_or(tracks.y, y, auto));
            if has_gutter {
                rows.push(get_or(gutter.y, y, zero));
            }
        }

        // Remove superfluous gutter tracks.
        if has_gutter {
            cols.pop();
            rows.pop();
        }

        Self {
            cols,
            rows,
            entries,
            vlines,
            hlines,
            header,
            footer,
            has_gutter,
        }
    }

    /// Get the grid entry in column `x` and row `y`.
    ///
    /// Returns `None` if it's a gutter cell.
    #[track_caller]
    pub fn entry(&self, x: usize, y: usize) -> Option<&Entry<'a>> {
        assert!(x < self.cols.len());
        assert!(y < self.rows.len());

        if self.has_gutter {
            // Even columns and rows are children, odd ones are gutter.
            if x % 2 == 0 && y % 2 == 0 {
                let c = 1 + self.cols.len() / 2;
                self.entries.get((y / 2) * c + x / 2)
            } else {
                None
            }
        } else {
            let c = self.cols.len();
            self.entries.get(y * c + x)
        }
    }

    /// Get the content of the cell in column `x` and row `y`.
    ///
    /// Returns `None` if it's a gutter cell or merged position.
    #[track_caller]
    pub fn cell(&self, x: usize, y: usize) -> Option<&Cell<'a>> {
        self.entry(x, y).and_then(Entry::as_cell)
    }

    /// Returns the position of the parent cell of the grid entry at the given
    /// position. It is guaranteed to have a non-gutter, non-merged cell at
    /// the returned position, due to how the grid is built.
    /// - If the entry at the given position is a cell, returns the given
    ///   position.
    /// - If it is a merged cell, returns the parent cell's position.
    /// - If it is a gutter cell, returns None.
    #[track_caller]
    pub fn parent_cell_position(&self, x: usize, y: usize) -> Option<Axes<usize>> {
        self.entry(x, y).map(|entry| match entry {
            Entry::Cell(_) => Axes::new(x, y),
            Entry::Merged { parent } => {
                let c = if self.has_gutter {
                    1 + self.cols.len() / 2
                } else {
                    self.cols.len()
                };
                let factor = if self.has_gutter { 2 } else { 1 };
                Axes::new(factor * (*parent % c), factor * (*parent / c))
            }
        })
    }

    /// Returns the position of the actual parent cell of a merged position,
    /// even if the given position is gutter, in which case we return the
    /// parent of the nearest adjacent content cell which could possibly span
    /// the given gutter position. If the given position is not a gutter cell,
    /// then this function will return the same as `parent_cell_position` would.
    /// If the given position is a gutter cell, but no cell spans it, returns
    /// `None`.
    ///
    /// This is useful for lines. A line needs to check if a cell next to it
    /// has a stroke override - even at a gutter position there could be a
    /// stroke override, since a cell could be merged with two cells at both
    /// ends of the gutter cell (e.g. to its left and to its right), and thus
    /// that cell would impose a stroke under the gutter. This function allows
    /// getting the position of that cell (which spans the given gutter
    /// position, if it is gutter), if it exists; otherwise returns None (it's
    /// gutter and no cell spans it).
    #[track_caller]
    pub fn effective_parent_cell_position(
        &self,
        x: usize,
        y: usize,
    ) -> Option<Axes<usize>> {
        if self.has_gutter {
            // If (x, y) is a gutter cell, we skip it (skip a gutter column and
            // row) to the nearest adjacent content cell, in the direction
            // which merged cells grow toward (increasing x and increasing y),
            // such that we can verify if that adjacent cell is merged with the
            // gutter cell by checking if its parent would come before (x, y).
            // Otherwise, no cell is merged with this gutter cell, and we
            // return None.
            self.parent_cell_position(x + x % 2, y + y % 2)
                .filter(|&parent| parent.x <= x && parent.y <= y)
        } else {
            self.parent_cell_position(x, y)
        }
    }

    /// Checks if the track with the given index is gutter.
    /// Does not check if the index is a valid track.
    #[inline]
    pub fn is_gutter_track(&self, index: usize) -> bool {
        self.has_gutter && index % 2 == 1
    }

    /// Returns the effective colspan of a cell, considering the gutters it
    /// might span if the grid has gutters.
    #[inline]
    pub fn effective_colspan_of_cell(&self, cell: &Cell) -> usize {
        if self.has_gutter {
            2 * cell.colspan.get() - 1
        } else {
            cell.colspan.get()
        }
    }

    /// Returns the effective rowspan of a cell, considering the gutters it
    /// might span if the grid has gutters.
    #[inline]
    pub fn effective_rowspan_of_cell(&self, cell: &Cell) -> usize {
        if self.has_gutter {
            2 * cell.rowspan.get() - 1
        } else {
            cell.rowspan.get()
        }
    }
}

/// Given a cell's requested x and y, the vector with the resolved cell
/// positions, the `auto_index` counter (determines the position of the next
/// `(auto, auto)` cell) and the amount of columns in the grid, returns the
/// final index of this cell in the vector of resolved cells.
///
/// The `start_new_row` parameter is used to ensure that, if this cell is
/// fully automatically positioned, it should start a new, empty row. This is
/// useful for headers and footers, which must start at their own rows, without
/// interference from previous cells.
#[allow(clippy::too_many_arguments)]
fn resolve_cell_position(
    cell_x: Smart<usize>,
    cell_y: Smart<usize>,
    colspan: usize,
    rowspan: usize,
    resolved_cells: &[Option<Entry>],
    auto_index: &mut usize,
    start_new_row: &mut bool,
    columns: usize,
) -> HintedStrResult<usize> {
    // Translates a (x, y) position to the equivalent index in the final cell vector.
    // Errors if the position would be too large.
    let cell_index = |x, y: usize| {
        y.checked_mul(columns)
            .and_then(|row_index| row_index.checked_add(x))
            .ok_or_else(|| HintedString::from(eco_format!("cell position too large")))
    };
    match (cell_x, cell_y) {
        // Fully automatic cell positioning. The cell did not
        // request a coordinate.
        (Smart::Auto, Smart::Auto) => {
            // Let's find the first available position starting from the
            // automatic position counter, searching in row-major order.
            let mut resolved_index = *auto_index;
            if *start_new_row {
                resolved_index =
                    find_next_empty_row(resolved_cells, resolved_index, columns);

                // Next cell won't have to start a new row if we just did that,
                // in principle.
                *start_new_row = false;
            } else {
                while let Some(Some(_)) = resolved_cells.get(resolved_index) {
                    // Skip any non-absent cell positions (`Some(None)`) to
                    // determine where this cell will be placed. An out of
                    // bounds position (thus `None`) is also a valid new
                    // position (only requires expanding the vector).
                    resolved_index += 1;
                }
            }

            // Ensure the next cell with automatic position will be
            // placed after this one (maybe not immediately after).
            //
            // The calculation below also affects the position of the upcoming
            // automatically-positioned lines.
            *auto_index = if colspan == columns {
                // The cell occupies all columns, so no cells can be placed
                // after it until all of its rows have been spanned.
                resolved_index + colspan * rowspan
            } else {
                // The next cell will have to be placed at least after its
                // spanned columns.
                resolved_index + colspan
            };

            Ok(resolved_index)
        }
        // Cell has chosen at least its column.
        (Smart::Custom(cell_x), cell_y) => {
            if cell_x >= columns {
                return Err(HintedString::from(eco_format!(
                    "cell could not be placed at invalid column {cell_x}"
                )));
            }
            if let Smart::Custom(cell_y) = cell_y {
                // Cell has chosen its exact position.
                cell_index(cell_x, cell_y)
            } else {
                // Cell has only chosen its column.
                // Let's find the first row which has that column available.
                let mut resolved_y = 0;
                while let Some(Some(_)) =
                    resolved_cells.get(cell_index(cell_x, resolved_y)?)
                {
                    // Try each row until either we reach an absent position
                    // (`Some(None)`) or an out of bounds position (`None`),
                    // in which case we'd create a new row to place this cell in.
                    resolved_y += 1;
                }
                cell_index(cell_x, resolved_y)
            }
        }
        // Cell has only chosen its row, not its column.
        (Smart::Auto, Smart::Custom(cell_y)) => {
            // Let's find the first column which has that row available.
            let first_row_pos = cell_index(0, cell_y)?;
            let last_row_pos = first_row_pos
                .checked_add(columns)
                .ok_or_else(|| eco_format!("cell position too large"))?;

            (first_row_pos..last_row_pos)
                .find(|possible_index| {
                    // Much like in the previous cases, we skip any occupied
                    // positions until we either reach an absent position
                    // (`Some(None)`) or an out of bounds position (`None`),
                    // in which case we can just expand the vector enough to
                    // place this cell. In either case, we found an available
                    // position.
                    !matches!(resolved_cells.get(*possible_index), Some(Some(_)))
                })
                .ok_or_else(|| {
                    eco_format!(
                        "cell could not be placed in row {cell_y} because it was full"
                    )
                })
                .hint("try specifying your cells in a different order")
        }
    }
}

/// Computes the index of the first cell in the next empty row in the grid,
/// starting with the given initial index.
fn find_next_empty_row(
    resolved_cells: &[Option<Entry>],
    initial_index: usize,
    columns: usize,
) -> usize {
    let mut resolved_index = initial_index.next_multiple_of(columns);
    while resolved_cells
        .get(resolved_index..resolved_index + columns)
        .is_some_and(|row| row.iter().any(Option::is_some))
    {
        // Skip non-empty rows.
        resolved_index += columns;
    }

    resolved_index
}

/// Fully merged rows under the cell of latest auto index indicate rowspans
/// occupying all columns, so we skip the auto index until the shortest rowspan
/// ends, such that, in the resulting row, we will be able to place an
/// automatically positioned cell - and, in particular, hlines under it. The
/// idea is that an auto hline will be placed after the shortest such rowspan.
/// Otherwise, the hline would just be placed under the first row of those
/// rowspans and disappear (except at the presence of column gutter).
fn skip_auto_index_through_fully_merged_rows(
    resolved_cells: &[Option<Entry>],
    auto_index: &mut usize,
    columns: usize,
) {
    // If the auto index isn't currently at the start of a row, that means
    // there's still at least one auto position left in the row, ignoring
    // cells with manual positions, so we wouldn't have a problem in placing
    // further cells or, in this case, hlines here.
    if *auto_index % columns == 0 {
        while resolved_cells
            .get(*auto_index..*auto_index + columns)
            .is_some_and(|row| {
                row.iter().all(|entry| matches!(entry, Some(Entry::Merged { .. })))
            })
        {
            *auto_index += columns;
        }
    }
}