typst_library/layout/
fr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
use std::fmt::{self, Debug, Formatter};
use std::iter::Sum;
use std::ops::{Add, Div, Mul, Neg};

use ecow::EcoString;
use typst_utils::{Numeric, Scalar};

use crate::foundations::{repr, ty, Repr};
use crate::layout::Abs;

/// Defines how the remaining space in a layout is distributed.
///
/// Each fractionally sized element gets space based on the ratio of its
/// fraction to the sum of all fractions.
///
/// For more details, also see the [h] and [v] functions and the
/// [grid function]($grid).
///
/// # Example
/// ```example
/// Left #h(1fr) Left-ish #h(2fr) Right
/// ```
#[ty(cast, name = "fraction")]
#[derive(Default, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct Fr(Scalar);

impl Fr {
    /// Takes up zero space: `0fr`.
    pub const fn zero() -> Self {
        Self(Scalar::ZERO)
    }

    /// Takes up as much space as all other items with this fraction: `1fr`.
    pub const fn one() -> Self {
        Self(Scalar::ONE)
    }

    /// Create a new fraction.
    pub const fn new(ratio: f64) -> Self {
        Self(Scalar::new(ratio))
    }

    /// Get the underlying number.
    pub const fn get(self) -> f64 {
        (self.0).get()
    }

    /// The absolute value of this fraction.
    pub fn abs(self) -> Self {
        Self::new(self.get().abs())
    }

    /// Determine this fraction's share in the remaining space.
    pub fn share(self, total: Self, remaining: Abs) -> Abs {
        let ratio = self / total;
        if ratio.is_finite() && remaining.is_finite() {
            (ratio * remaining).max(Abs::zero())
        } else {
            Abs::zero()
        }
    }
}

impl Numeric for Fr {
    fn zero() -> Self {
        Self::zero()
    }

    fn is_finite(self) -> bool {
        self.0.is_finite()
    }
}

impl Debug for Fr {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(f, "{:?}fr", self.get())
    }
}

impl Repr for Fr {
    fn repr(&self) -> EcoString {
        repr::format_float_with_unit(self.get(), "fr")
    }
}

impl Neg for Fr {
    type Output = Self;

    fn neg(self) -> Self {
        Self(-self.0)
    }
}

impl Add for Fr {
    type Output = Self;

    fn add(self, other: Self) -> Self {
        Self(self.0 + other.0)
    }
}

typst_utils::sub_impl!(Fr - Fr -> Fr);

impl Mul<f64> for Fr {
    type Output = Self;

    fn mul(self, other: f64) -> Self {
        Self(self.0 * other)
    }
}

impl Mul<Fr> for f64 {
    type Output = Fr;

    fn mul(self, other: Fr) -> Fr {
        other * self
    }
}

impl Div for Fr {
    type Output = f64;

    fn div(self, other: Self) -> f64 {
        self.get() / other.get()
    }
}

impl Div<f64> for Fr {
    type Output = Self;

    fn div(self, other: f64) -> Self {
        Self(self.0 / other)
    }
}

typst_utils::assign_impl!(Fr += Fr);
typst_utils::assign_impl!(Fr -= Fr);
typst_utils::assign_impl!(Fr *= f64);
typst_utils::assign_impl!(Fr /= f64);

impl Sum for Fr {
    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
        Self(iter.map(|s| s.0).sum())
    }
}