typst_library/layout/
abs.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use std::fmt::{self, Debug, Formatter};
use std::iter::Sum;
use std::ops::{Add, Div, Mul, Neg, Rem};

use ecow::EcoString;
use typst_utils::{Numeric, Scalar};

use crate::foundations::{cast, repr, Fold, Repr, Value};

/// An absolute length.
#[derive(Default, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct Abs(Scalar);

impl Abs {
    /// The zero length.
    pub const fn zero() -> Self {
        Self(Scalar::ZERO)
    }

    /// The infinite length.
    pub const fn inf() -> Self {
        Self(Scalar::INFINITY)
    }

    /// Create an absolute length from a number of raw units.
    pub const fn raw(raw: f64) -> Self {
        Self(Scalar::new(raw))
    }

    /// Create an absolute length from a value in a unit.
    pub fn with_unit(val: f64, unit: AbsUnit) -> Self {
        Self(Scalar::new(val * unit.raw_scale()))
    }

    /// Create an absolute length from a number of points.
    pub fn pt(pt: f64) -> Self {
        Self::with_unit(pt, AbsUnit::Pt)
    }

    /// Create an absolute length from a number of millimeters.
    pub fn mm(mm: f64) -> Self {
        Self::with_unit(mm, AbsUnit::Mm)
    }

    /// Create an absolute length from a number of centimeters.
    pub fn cm(cm: f64) -> Self {
        Self::with_unit(cm, AbsUnit::Cm)
    }

    /// Create an absolute length from a number of inches.
    pub fn inches(inches: f64) -> Self {
        Self::with_unit(inches, AbsUnit::In)
    }

    /// Get the value of this absolute length in raw units.
    pub const fn to_raw(self) -> f64 {
        self.0.get()
    }

    /// Get the value of this absolute length in a unit.
    pub fn to_unit(self, unit: AbsUnit) -> f64 {
        self.to_raw() / unit.raw_scale()
    }

    /// Convert this to a number of points.
    pub fn to_pt(self) -> f64 {
        self.to_unit(AbsUnit::Pt)
    }

    /// Convert this to a number of millimeters.
    pub fn to_mm(self) -> f64 {
        self.to_unit(AbsUnit::Mm)
    }

    /// Convert this to a number of centimeters.
    pub fn to_cm(self) -> f64 {
        self.to_unit(AbsUnit::Cm)
    }

    /// Convert this to a number of inches.
    pub fn to_inches(self) -> f64 {
        self.to_unit(AbsUnit::In)
    }

    /// The absolute value of this length.
    pub fn abs(self) -> Self {
        Self::raw(self.to_raw().abs())
    }

    /// The minimum of this and another absolute length.
    pub fn min(self, other: Self) -> Self {
        Self(self.0.min(other.0))
    }

    /// Set to the minimum of this and another absolute length.
    pub fn set_min(&mut self, other: Self) {
        *self = (*self).min(other);
    }

    /// The maximum of this and another absolute length.
    pub fn max(self, other: Self) -> Self {
        Self(self.0.max(other.0))
    }

    /// Set to the maximum of this and another absolute length.
    pub fn set_max(&mut self, other: Self) {
        *self = (*self).max(other);
    }

    /// Whether the other absolute length fits into this one (i.e. is smaller).
    /// Allows for a bit of slack.
    pub fn fits(self, other: Self) -> bool {
        self.0 + AbsUnit::EPS >= other.0
    }

    /// Compares two absolute lengths for whether they are approximately equal.
    pub fn approx_eq(self, other: Self) -> bool {
        self == other || (self - other).to_raw().abs() < AbsUnit::EPS
    }

    /// Whether the size is close to zero or negative.
    pub fn approx_empty(self) -> bool {
        self.to_raw() <= AbsUnit::EPS
    }

    /// Returns a number that represent the sign of this length
    pub fn signum(self) -> f64 {
        self.0.get().signum()
    }
}

impl Numeric for Abs {
    fn zero() -> Self {
        Self::zero()
    }

    fn is_finite(self) -> bool {
        self.0.is_finite()
    }
}

impl Debug for Abs {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        write!(f, "{:?}pt", self.to_pt())
    }
}

impl Repr for Abs {
    fn repr(&self) -> EcoString {
        repr::format_float_with_unit(self.to_pt(), "pt")
    }
}

impl Neg for Abs {
    type Output = Self;

    fn neg(self) -> Self {
        Self(-self.0)
    }
}

impl Add for Abs {
    type Output = Self;

    fn add(self, other: Self) -> Self {
        Self(self.0 + other.0)
    }
}

typst_utils::sub_impl!(Abs - Abs -> Abs);

impl Mul<f64> for Abs {
    type Output = Self;

    fn mul(self, other: f64) -> Self {
        Self(self.0 * other)
    }
}

impl Mul<Abs> for f64 {
    type Output = Abs;

    fn mul(self, other: Abs) -> Abs {
        other * self
    }
}

impl Div<f64> for Abs {
    type Output = Self;

    fn div(self, other: f64) -> Self {
        Self(self.0 / other)
    }
}

impl Div for Abs {
    type Output = f64;

    fn div(self, other: Self) -> f64 {
        self.to_raw() / other.to_raw()
    }
}

typst_utils::assign_impl!(Abs += Abs);
typst_utils::assign_impl!(Abs -= Abs);
typst_utils::assign_impl!(Abs *= f64);
typst_utils::assign_impl!(Abs /= f64);

impl Rem for Abs {
    type Output = Self;

    fn rem(self, other: Self) -> Self::Output {
        Self(self.0 % other.0)
    }
}

impl Sum for Abs {
    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
        Self(iter.map(|s| s.0).sum())
    }
}

impl<'a> Sum<&'a Self> for Abs {
    fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
        Self(iter.map(|s| s.0).sum())
    }
}

impl Fold for Abs {
    fn fold(self, _: Self) -> Self {
        self
    }
}

cast! {
    Abs,
    self => Value::Length(self.into()),
}

/// Different units of absolute measurement.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub enum AbsUnit {
    /// Points.
    Pt,
    /// Millimeters.
    Mm,
    /// Centimeters.
    Cm,
    /// Inches.
    In,
}

impl AbsUnit {
    /// The epsilon for approximate length comparisons.
    const EPS: f64 = 1e-4;

    /// How many raw units correspond to a value of `1.0` in this unit.
    const fn raw_scale(self) -> f64 {
        // We choose a raw scale which has an integer conversion value to all
        // four units of interest, so that whole numbers in all units can be
        // represented accurately.
        match self {
            AbsUnit::Pt => 127.0,
            AbsUnit::Mm => 360.0,
            AbsUnit::Cm => 3600.0,
            AbsUnit::In => 9144.0,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_length_unit_conversion() {
        assert!((Abs::mm(150.0).to_cm() - 15.0) < 1e-4);
    }
}