typst_library/foundations/int.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
use std::num::{NonZeroI64, NonZeroIsize, NonZeroU64, NonZeroUsize, ParseIntError};
use ecow::{eco_format, EcoString};
use smallvec::SmallVec;
use crate::diag::{bail, StrResult};
use crate::foundations::{
cast, func, repr, scope, ty, Bytes, Cast, Decimal, Repr, Str, Value,
};
/// A whole number.
///
/// The number can be negative, zero, or positive. As Typst uses 64 bits to
/// store integers, integers cannot be smaller than `{-9223372036854775808}` or
/// larger than `{9223372036854775807}`. Integer literals are always positive,
/// so a negative integer such as `{-1}` is semantically the negation `-` of the
/// positive literal `1`. A positive integer greater than the maximum value and
/// a negative integer less than or equal to the minimum value cannot be
/// represented as an integer literal, and are instead parsed as a `{float}`.
/// The minimum integer value can still be obtained through integer arithmetic.
///
/// The number can also be specified as hexadecimal, octal, or binary by
/// starting it with a zero followed by either `x`, `o`, or `b`.
///
/// You can convert a value to an integer with this type's constructor.
///
/// # Example
/// ```example
/// #(1 + 2) \
/// #(2 - 5) \
/// #(3 + 4 < 8)
///
/// #0xff \
/// #0o10 \
/// #0b1001
/// ```
#[ty(scope, cast, name = "int", title = "Integer")]
type i64;
#[scope]
impl i64 {
/// Converts a value to an integer. Raises an error if there is an attempt
/// to produce an integer larger than the maximum 64-bit signed integer
/// or smaller than the minimum 64-bit signed integer.
///
/// - Booleans are converted to `0` or `1`.
/// - Floats and decimals are truncated to the next 64-bit integer.
/// - Strings are parsed in base 10.
///
/// ```example
/// #int(false) \
/// #int(true) \
/// #int(2.7) \
/// #int(decimal("3.8")) \
/// #(int("27") + int("4"))
/// ```
#[func(constructor)]
pub fn construct(
/// The value that should be converted to an integer.
value: ToInt,
) -> i64 {
value.0
}
/// Calculates the sign of an integer.
///
/// - If the number is positive, returns `{1}`.
/// - If the number is negative, returns `{-1}`.
/// - If the number is zero, returns `{0}`.
///
/// ```example
/// #(5).signum() \
/// #(-5).signum() \
/// #(0).signum()
/// ```
#[func]
pub fn signum(self) -> i64 {
i64::signum(self)
}
/// Calculates the bitwise NOT of an integer.
///
/// For the purposes of this function, the operand is treated as a signed
/// integer of 64 bits.
///
/// ```example
/// #4.bit-not() \
/// #(-1).bit-not()
/// ```
#[func(title = "Bitwise NOT")]
pub fn bit_not(self) -> i64 {
!self
}
/// Calculates the bitwise AND between two integers.
///
/// For the purposes of this function, the operands are treated as signed
/// integers of 64 bits.
///
/// ```example
/// #128.bit-and(192)
/// ```
#[func(title = "Bitwise AND")]
pub fn bit_and(
self,
/// The right-hand operand of the bitwise AND.
rhs: i64,
) -> i64 {
self & rhs
}
/// Calculates the bitwise OR between two integers.
///
/// For the purposes of this function, the operands are treated as signed
/// integers of 64 bits.
///
/// ```example
/// #64.bit-or(32)
/// ```
#[func(title = "Bitwise OR")]
pub fn bit_or(
self,
/// The right-hand operand of the bitwise OR.
rhs: i64,
) -> i64 {
self | rhs
}
/// Calculates the bitwise XOR between two integers.
///
/// For the purposes of this function, the operands are treated as signed
/// integers of 64 bits.
///
/// ```example
/// #64.bit-xor(96)
/// ```
#[func(title = "Bitwise XOR")]
pub fn bit_xor(
self,
/// The right-hand operand of the bitwise XOR.
rhs: i64,
) -> i64 {
self ^ rhs
}
/// Shifts the operand's bits to the left by the specified amount.
///
/// For the purposes of this function, the operand is treated as a signed
/// integer of 64 bits. An error will occur if the result is too large to
/// fit in a 64-bit integer.
///
/// ```example
/// #33.bit-lshift(2) \
/// #(-1).bit-lshift(3)
/// ```
#[func(title = "Bitwise Left Shift")]
pub fn bit_lshift(
self,
/// The amount of bits to shift. Must not be negative.
shift: u32,
) -> StrResult<i64> {
Ok(self.checked_shl(shift).ok_or("the result is too large")?)
}
/// Shifts the operand's bits to the right by the specified amount.
/// Performs an arithmetic shift by default (extends the sign bit to the left,
/// such that negative numbers stay negative), but that can be changed by the
/// `logical` parameter.
///
/// For the purposes of this function, the operand is treated as a signed
/// integer of 64 bits.
///
/// ```example
/// #64.bit-rshift(2) \
/// #(-8).bit-rshift(2) \
/// #(-8).bit-rshift(2, logical: true)
/// ```
#[func(title = "Bitwise Right Shift")]
pub fn bit_rshift(
self,
/// The amount of bits to shift. Must not be negative.
///
/// Shifts larger than 63 are allowed and will cause the return value to
/// saturate. For non-negative numbers, the return value saturates at
/// `{0}`, while, for negative numbers, it saturates at `{-1}` if
/// `logical` is set to `{false}`, or `{0}` if it is `{true}`. This
/// behavior is consistent with just applying this operation multiple
/// times. Therefore, the shift will always succeed.
shift: u32,
/// Toggles whether a logical (unsigned) right shift should be performed
/// instead of arithmetic right shift.
/// If this is `{true}`, negative operands will not preserve their sign
/// bit, and bits which appear to the left after the shift will be
/// `{0}`. This parameter has no effect on non-negative operands.
#[named]
#[default(false)]
logical: bool,
) -> i64 {
if logical {
if shift >= u64::BITS {
// Excessive logical right shift would be equivalent to setting
// all bits to zero. Using `.min(63)` is not enough for logical
// right shift, since `-1 >> 63` returns 1, whereas
// `calc.bit-rshift(-1, 64)` should return the same as
// `(-1 >> 63) >> 1`, which is zero.
0
} else {
// Here we reinterpret the signed integer's bits as unsigned to
// perform logical right shift, and then reinterpret back as signed.
// This is valid as, according to the Rust reference, casting between
// two integers of same size (i64 <-> u64) is a no-op (two's complement
// is used).
// Reference:
// https://doc.rust-lang.org/stable/reference/expressions/operator-expr.html#numeric-cast
((self as u64) >> shift) as i64
}
} else {
// Saturate at -1 (negative) or 0 (otherwise) on excessive arithmetic
// right shift. Shifting those numbers any further does not change
// them, so it is consistent.
let shift = shift.min(i64::BITS - 1);
self >> shift
}
}
/// Converts bytes to an integer.
///
/// ```example
/// #int.from-bytes(bytes((0, 0, 0, 0, 0, 0, 0, 1))) \
/// #int.from-bytes(bytes((1, 0, 0, 0, 0, 0, 0, 0)), endian: "big")
/// ```
#[func]
pub fn from_bytes(
/// The bytes that should be converted to an integer.
///
/// Must be of length at most 8 so that the result fits into a 64-bit
/// signed integer.
bytes: Bytes,
/// The endianness of the conversion.
#[named]
#[default(Endianness::Little)]
endian: Endianness,
/// Whether the bytes should be treated as a signed integer. If this is
/// `{true}` and the most significant bit is set, the resulting number
/// will negative.
#[named]
#[default(true)]
signed: bool,
) -> StrResult<i64> {
let len = bytes.len();
if len == 0 {
return Ok(0);
} else if len > 8 {
bail!("too many bytes to convert to a 64 bit number");
}
// `decimal` will hold the part of the buffer that should be filled with
// the input bytes, `rest` will remain as is or be filled with 0xFF for
// negative numbers if signed is true.
//
// – big-endian: `decimal` will be the rightmost bytes of the buffer.
// - little-endian: `decimal` will be the leftmost bytes of the buffer.
let mut buf = [0u8; 8];
let (rest, decimal) = match endian {
Endianness::Big => buf.split_at_mut(8 - len),
Endianness::Little => {
let (first, second) = buf.split_at_mut(len);
(second, first)
}
};
decimal.copy_from_slice(bytes.as_ref());
// Perform sign-extension if necessary.
if signed {
let most_significant_byte = match endian {
Endianness::Big => decimal[0],
Endianness::Little => decimal[len - 1],
};
if most_significant_byte & 0b1000_0000 != 0 {
rest.fill(0xFF);
}
}
Ok(match endian {
Endianness::Big => i64::from_be_bytes(buf),
Endianness::Little => i64::from_le_bytes(buf),
})
}
/// Converts an integer to bytes.
///
/// ```example
/// #array(10000.to-bytes(endian: "big")) \
/// #array(10000.to-bytes(size: 4))
/// ```
#[func]
pub fn to_bytes(
self,
/// The endianness of the conversion.
#[named]
#[default(Endianness::Little)]
endian: Endianness,
/// The size in bytes of the resulting bytes (must be at least zero). If
/// the integer is too large to fit in the specified size, the
/// conversion will truncate the remaining bytes based on the
/// endianness. To keep the same resulting value, if the endianness is
/// big-endian, the truncation will happen at the rightmost bytes.
/// Otherwise, if the endianness is little-endian, the truncation will
/// happen at the leftmost bytes.
///
/// Be aware that if the integer is negative and the size is not enough
/// to make the number fit, when passing the resulting bytes to
/// `int.from-bytes`, the resulting number might be positive, as the
/// most significant bit might not be set to 1.
#[named]
#[default(8)]
size: usize,
) -> Bytes {
let array = match endian {
Endianness::Big => self.to_be_bytes(),
Endianness::Little => self.to_le_bytes(),
};
let mut buf = SmallVec::<[u8; 8]>::from_elem(0, size);
match endian {
Endianness::Big => {
// Copy the bytes from the array to the buffer, starting from
// the end of the buffer.
let buf_start = size.saturating_sub(8);
let array_start = 8usize.saturating_sub(size);
buf[buf_start..].copy_from_slice(&array[array_start..])
}
Endianness::Little => {
// Copy the bytes from the array to the buffer, starting from
// the beginning of the buffer.
let end = size.min(8);
buf[..end].copy_from_slice(&array[..end])
}
}
Bytes::new(buf)
}
}
impl Repr for i64 {
fn repr(&self) -> EcoString {
eco_format!("{:?}", self)
}
}
/// Represents the byte order used for converting integers and floats to bytes
/// and vice versa.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash, Cast)]
pub enum Endianness {
/// Big-endian byte order: The highest-value byte is at the beginning of the
/// bytes.
Big,
/// Little-endian byte order: The lowest-value byte is at the beginning of
/// the bytes.
Little,
}
/// A value that can be cast to an integer.
pub struct ToInt(i64);
cast! {
ToInt,
v: i64 => Self(v),
v: bool => Self(v as i64),
v: f64 => Self(convert_float_to_int(v)?),
v: Decimal => Self(i64::try_from(v).map_err(|_| eco_format!("number too large"))?),
v: Str => Self(parse_int(&v).map_err(|_| eco_format!("invalid integer: {}", v))?),
}
pub fn convert_float_to_int(f: f64) -> StrResult<i64> {
if f <= i64::MIN as f64 - 1.0 || f >= i64::MAX as f64 + 1.0 {
Err(eco_format!("number too large"))
} else {
Ok(f as i64)
}
}
fn parse_int(mut s: &str) -> Result<i64, ParseIntError> {
let mut sign = 1;
if let Some(rest) = s.strip_prefix('-').or_else(|| s.strip_prefix(repr::MINUS_SIGN)) {
sign = -1;
s = rest;
}
if sign == -1 && s == "9223372036854775808" {
return Ok(i64::MIN);
}
Ok(sign * s.parse::<i64>()?)
}
macro_rules! signed_int {
($($ty:ty)*) => {
$(cast! {
$ty,
self => Value::Int(self as _),
v: i64 => v.try_into().map_err(|_| "number too large")?,
})*
}
}
macro_rules! unsigned_int {
($($ty:ty)*) => {
$(cast! {
$ty,
self => {
#[allow(irrefutable_let_patterns)]
if let Ok(int) = i64::try_from(self) {
Value::Int(int)
} else {
// Some u64 are too large to be cast as i64
// In that case, we accept that there may be a
// precision loss, and use a floating point number
Value::Float(self as _)
}
},
v: i64 => v.try_into().map_err(|_| {
if v < 0 {
"number must be at least zero"
} else {
"number too large"
}
})?,
})*
}
}
signed_int! { i8 i16 i32 isize }
unsigned_int! { u8 u16 u32 u64 usize }
cast! {
NonZeroI64,
self => Value::Int(self.get() as _),
v: i64 => v.try_into()
.map_err(|_| if v == 0 {
"number must not be zero"
} else {
"number too large"
})?,
}
cast! {
NonZeroIsize,
self => Value::Int(self.get() as _),
v: i64 => v
.try_into()
.and_then(|v: isize| v.try_into())
.map_err(|_| if v == 0 {
"number must not be zero"
} else {
"number too large"
})?,
}
cast! {
NonZeroU64,
self => Value::Int(self.get() as _),
v: i64 => v
.try_into()
.and_then(|v: u64| v.try_into())
.map_err(|_| if v <= 0 {
"number must be positive"
} else {
"number too large"
})?,
}
cast! {
NonZeroUsize,
self => Value::Int(self.get() as _),
v: i64 => v
.try_into()
.and_then(|v: usize| v.try_into())
.map_err(|_| if v <= 0 {
"number must be positive"
} else {
"number too large"
})?,
}