typst_library/foundations/decimal.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
use std::fmt::{self, Display, Formatter};
use std::hash::{Hash, Hasher};
use std::ops::Neg;
use std::str::FromStr;
use ecow::{eco_format, EcoString};
use rust_decimal::MathematicalOps;
use typst_syntax::{ast, Span, Spanned};
use crate::diag::{warning, At, SourceResult};
use crate::engine::Engine;
use crate::foundations::{cast, func, repr, scope, ty, Repr, Str};
use crate::World;
/// A fixed-point decimal number type.
///
/// This type should be used for precise arithmetic operations on numbers
/// represented in base 10. A typical use case is representing currency.
///
/// # Example
/// ```example
/// Decimal: #(decimal("0.1") + decimal("0.2")) \
/// Float: #(0.1 + 0.2)
/// ```
///
/// # Construction and casts
/// To create a decimal number, use the `{decimal(string)}` constructor, such as
/// in `{decimal("3.141592653")}` **(note the double quotes!)**. This
/// constructor preserves all given fractional digits, provided they are
/// representable as per the limits specified below (otherwise, an error is
/// raised).
///
/// You can also convert any [integer]($int) to a decimal with the
/// `{decimal(int)}` constructor, e.g. `{decimal(59)}`. However, note that
/// constructing a decimal from a [floating-point number]($float), while
/// supported, **is an imprecise conversion and therefore discouraged.** A
/// warning will be raised if Typst detects that there was an accidental `float`
/// to `decimal` cast through its constructor, e.g. if writing `{decimal(3.14)}`
/// (note the lack of double quotes, indicating this is an accidental `float`
/// cast and therefore imprecise). It is recommended to use strings for
/// constant decimal values instead (e.g. `{decimal("3.14")}`).
///
/// The precision of a `float` to `decimal` cast can be slightly improved by
/// rounding the result to 15 digits with [`calc.round`]($calc.round), but there
/// are still no precision guarantees for that kind of conversion.
///
/// # Operations
/// Basic arithmetic operations are supported on two decimals and on pairs of
/// decimals and integers.
///
/// Built-in operations between `float` and `decimal` are not supported in order
/// to guard against accidental loss of precision. They will raise an error
/// instead.
///
/// Certain `calc` functions, such as trigonometric functions and power between
/// two real numbers, are also only supported for `float` (although raising
/// `decimal` to integer exponents is supported). You can opt into potentially
/// imprecise operations with the `{float(decimal)}` constructor, which casts
/// the `decimal` number into a `float`, allowing for operations without
/// precision guarantees.
///
/// # Displaying decimals
/// To display a decimal, simply insert the value into the document. To only
/// display a certain number of digits, [round]($calc.round) the decimal first.
/// Localized formatting of decimals and other numbers is not yet supported, but
/// planned for the future.
///
/// You can convert decimals to strings using the [`str`] constructor. This way,
/// you can post-process the displayed representation, e.g. to replace the
/// period with a comma (as a stand-in for proper built-in localization to
/// languages that use the comma).
///
/// # Precision and limits
/// A `decimal` number has a limit of 28 to 29 significant base-10 digits. This
/// includes the sum of digits before and after the decimal point. As such,
/// numbers with more fractional digits have a smaller range. The maximum and
/// minimum `decimal` numbers have a value of `{79228162514264337593543950335}`
/// and `{-79228162514264337593543950335}` respectively. In contrast with
/// [`float`], this type does not support infinity or NaN, so overflowing or
/// underflowing operations will raise an error.
///
/// Typical operations between `decimal` numbers, such as addition,
/// multiplication, and [power]($calc.pow) to an integer, will be highly precise
/// due to their fixed-point representation. Note, however, that multiplication
/// and division may not preserve all digits in some edge cases: while they are
/// considered precise, digits past the limits specified above are rounded off
/// and lost, so some loss of precision beyond the maximum representable digits
/// is possible. Note that this behavior can be observed not only when dividing,
/// but also when multiplying by numbers between 0 and 1, as both operations can
/// push a number's fractional digits beyond the limits described above, leading
/// to rounding. When those two operations do not surpass the digit limits, they
/// are fully precise.
#[ty(scope, cast)]
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct Decimal(rust_decimal::Decimal);
impl Decimal {
pub const ZERO: Self = Self(rust_decimal::Decimal::ZERO);
pub const ONE: Self = Self(rust_decimal::Decimal::ONE);
pub const MIN: Self = Self(rust_decimal::Decimal::MIN);
pub const MAX: Self = Self(rust_decimal::Decimal::MAX);
/// Whether this decimal value is zero.
pub const fn is_zero(self) -> bool {
self.0.is_zero()
}
/// Whether this decimal value is negative.
pub const fn is_negative(self) -> bool {
self.0.is_sign_negative()
}
/// Whether this decimal has fractional part equal to zero (is an integer).
pub fn is_integer(self) -> bool {
self.0.is_integer()
}
/// Computes the absolute value of this decimal.
pub fn abs(self) -> Self {
Self(self.0.abs())
}
/// Computes the largest integer less than or equal to this decimal.
///
/// A decimal is returned as this may not be within `i64`'s range of
/// values.
pub fn floor(self) -> Self {
Self(self.0.floor())
}
/// Computes the smallest integer greater than or equal to this decimal.
///
/// A decimal is returned as this may not be within `i64`'s range of
/// values.
pub fn ceil(self) -> Self {
Self(self.0.ceil())
}
/// Returns the integer part of this decimal.
pub fn trunc(self) -> Self {
Self(self.0.trunc())
}
/// Returns the fractional part of this decimal (with the integer part set
/// to zero).
pub fn fract(self) -> Self {
Self(self.0.fract())
}
/// Rounds this decimal up to the specified amount of digits with the
/// traditional rounding rules, using the "midpoint away from zero"
/// strategy (6.5 -> 7, -6.5 -> -7).
///
/// If given a negative amount of digits, rounds to integer digits instead
/// with the same rounding strategy. For example, rounding to -3 digits
/// will turn 34567.89 into 35000.00 and -34567.89 into -35000.00.
///
/// Note that this can return `None` when using negative digits where the
/// rounded number would overflow the available range for decimals.
pub fn round(self, digits: i32) -> Option<Self> {
// Positive digits can be handled by just rounding with rust_decimal.
if let Ok(positive_digits) = u32::try_from(digits) {
return Some(Self(self.0.round_dp_with_strategy(
positive_digits,
rust_decimal::RoundingStrategy::MidpointAwayFromZero,
)));
}
// We received negative digits, so we round to integer digits.
let mut num = self.0;
let old_scale = num.scale();
let digits = -digits as u32;
let (Ok(_), Some(ten_to_digits)) = (
// Same as dividing by 10^digits.
num.set_scale(old_scale + digits),
rust_decimal::Decimal::TEN.checked_powi(digits as i64),
) else {
// Scaling more than any possible amount of integer digits.
let mut zero = rust_decimal::Decimal::ZERO;
zero.set_sign_negative(self.is_negative());
return Some(Self(zero));
};
// Round to this integer digit.
num = num.round_dp_with_strategy(
0,
rust_decimal::RoundingStrategy::MidpointAwayFromZero,
);
// Multiply by 10^digits again, which can overflow and fail.
num.checked_mul(ten_to_digits).map(Self)
}
/// Attempts to add two decimals.
///
/// Returns `None` on overflow or underflow.
pub fn checked_add(self, other: Self) -> Option<Self> {
self.0.checked_add(other.0).map(Self)
}
/// Attempts to subtract a decimal from another.
///
/// Returns `None` on overflow or underflow.
pub fn checked_sub(self, other: Self) -> Option<Self> {
self.0.checked_sub(other.0).map(Self)
}
/// Attempts to multiply two decimals.
///
/// Returns `None` on overflow or underflow.
pub fn checked_mul(self, other: Self) -> Option<Self> {
self.0.checked_mul(other.0).map(Self)
}
/// Attempts to divide two decimals.
///
/// Returns `None` if `other` is zero, as well as on overflow or underflow.
pub fn checked_div(self, other: Self) -> Option<Self> {
self.0.checked_div(other.0).map(Self)
}
/// Attempts to obtain the quotient of Euclidean division between two
/// decimals. Implemented similarly to [`f64::div_euclid`].
///
/// The returned quotient is truncated and adjusted if the remainder was
/// negative.
///
/// Returns `None` if `other` is zero, as well as on overflow or underflow.
pub fn checked_div_euclid(self, other: Self) -> Option<Self> {
let q = self.0.checked_div(other.0)?.trunc();
if self
.0
.checked_rem(other.0)
.as_ref()
.is_some_and(rust_decimal::Decimal::is_sign_negative)
{
return if other.0.is_sign_positive() {
q.checked_sub(rust_decimal::Decimal::ONE).map(Self)
} else {
q.checked_add(rust_decimal::Decimal::ONE).map(Self)
};
}
Some(Self(q))
}
/// Attempts to obtain the remainder of Euclidean division between two
/// decimals. Implemented similarly to [`f64::rem_euclid`].
///
/// The returned decimal `r` is non-negative within the range
/// `0.0 <= r < other.abs()`.
///
/// Returns `None` if `other` is zero, as well as on overflow or underflow.
pub fn checked_rem_euclid(self, other: Self) -> Option<Self> {
let r = self.0.checked_rem(other.0)?;
Some(Self(if r.is_sign_negative() { r.checked_add(other.0.abs())? } else { r }))
}
/// Attempts to calculate the remainder of the division of two decimals.
///
/// Returns `None` if `other` is zero, as well as on overflow or underflow.
pub fn checked_rem(self, other: Self) -> Option<Self> {
self.0.checked_rem(other.0).map(Self)
}
/// Attempts to take one decimal to the power of an integer.
///
/// Returns `None` for invalid operands, as well as on overflow or
/// underflow.
pub fn checked_powi(self, other: i64) -> Option<Self> {
self.0.checked_powi(other).map(Self)
}
}
#[scope]
impl Decimal {
/// Converts a value to a `decimal`.
///
/// It is recommended to use a string to construct the decimal number, or an
/// [integer]($int) (if desired). The string must contain a number in the
/// format `{"3.14159"}` (or `{"-3.141519"}` for negative numbers). The
/// fractional digits are fully preserved; if that's not possible due to the
/// limit of significant digits (around 28 to 29) having been reached, an
/// error is raised as the given decimal number wouldn't be representable.
///
/// While this constructor can be used with [floating-point numbers]($float)
/// to cast them to `decimal`, doing so is **discouraged** as **this cast is
/// inherently imprecise.** It is easy to accidentally perform this cast by
/// writing `{decimal(1.234)}` (note the lack of double quotes), which is
/// why Typst will emit a warning in that case. Please write
/// `{decimal("1.234")}` instead for that particular case (initialization of
/// a constant decimal). Also note that floats that are NaN or infinite
/// cannot be cast to decimals and will raise an error.
///
/// ```example
/// #decimal("1.222222222222222")
/// ```
#[func(constructor)]
pub fn construct(
engine: &mut Engine,
/// The value that should be converted to a decimal.
value: Spanned<ToDecimal>,
) -> SourceResult<Decimal> {
match value.v {
ToDecimal::Str(str) => Self::from_str(&str.replace(repr::MINUS_SIGN, "-"))
.map_err(|_| eco_format!("invalid decimal: {str}"))
.at(value.span),
ToDecimal::Int(int) => Ok(Self::from(int)),
ToDecimal::Float(float) => {
warn_on_float_literal(engine, value.span);
Self::try_from(float)
.map_err(|_| {
eco_format!(
"float is not a valid decimal: {}",
repr::format_float(float, None, true, "")
)
})
.at(value.span)
}
ToDecimal::Decimal(decimal) => Ok(decimal),
}
}
}
/// Emits a warning when a decimal is constructed from a float literal.
fn warn_on_float_literal(engine: &mut Engine, span: Span) -> Option<()> {
let id = span.id()?;
let source = engine.world.source(id).ok()?;
let node = source.find(span)?;
if node.is::<ast::Float>() {
engine.sink.warn(warning!(
span,
"creating a decimal using imprecise float literal";
hint: "use a string in the decimal constructor to avoid loss \
of precision: `decimal({})`",
node.text().repr()
));
}
Some(())
}
impl FromStr for Decimal {
type Err = rust_decimal::Error;
fn from_str(s: &str) -> Result<Self, Self::Err> {
rust_decimal::Decimal::from_str_exact(s).map(Self)
}
}
impl From<i64> for Decimal {
fn from(value: i64) -> Self {
Self(rust_decimal::Decimal::from(value))
}
}
impl TryFrom<f64> for Decimal {
type Error = ();
/// Attempts to convert a Decimal to a float.
///
/// This can fail if the float is infinite or NaN, or otherwise cannot be
/// represented by a decimal number.
fn try_from(value: f64) -> Result<Self, Self::Error> {
rust_decimal::Decimal::from_f64_retain(value).map(Self).ok_or(())
}
}
impl TryFrom<Decimal> for f64 {
type Error = rust_decimal::Error;
/// Attempts to convert a Decimal to a float.
///
/// This should in principle be infallible according to the implementation,
/// but we mirror the decimal implementation's API either way.
fn try_from(value: Decimal) -> Result<Self, Self::Error> {
value.0.try_into()
}
}
impl TryFrom<Decimal> for i64 {
type Error = rust_decimal::Error;
/// Attempts to convert a Decimal to an integer.
///
/// Returns an error if the decimal has a fractional part, or if there
/// would be overflow or underflow.
fn try_from(value: Decimal) -> Result<Self, Self::Error> {
value.0.try_into()
}
}
impl Display for Decimal {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
if self.0.is_sign_negative() {
f.write_str(repr::MINUS_SIGN)?;
}
self.0.abs().fmt(f)
}
}
impl Repr for Decimal {
fn repr(&self) -> EcoString {
eco_format!("decimal({})", eco_format!("{}", self.0).repr())
}
}
impl Neg for Decimal {
type Output = Self;
fn neg(self) -> Self {
Self(-self.0)
}
}
impl Hash for Decimal {
fn hash<H: Hasher>(&self, state: &mut H) {
// `rust_decimal`'s Hash implementation normalizes decimals before
// hashing them. This means decimals with different scales but
// equivalent value not only compare equal but also hash equally. Here,
// we hash all bytes explicitly to ensure the scale is also considered.
// This means that 123.314 == 123.31400, but 123.314.hash() !=
// 123.31400.hash().
//
// Note that this implies that equal decimals can have different hashes,
// which might generate problems with certain data structures, such as
// HashSet and HashMap.
self.0.serialize().hash(state);
}
}
/// A value that can be cast to a decimal.
pub enum ToDecimal {
/// A decimal to be converted to itself.
Decimal(Decimal),
/// A string with the decimal's representation.
Str(EcoString),
/// An integer to be converted to the equivalent decimal.
Int(i64),
/// A float to be converted to the equivalent decimal.
Float(f64),
}
cast! {
ToDecimal,
v: Decimal => Self::Decimal(v),
v: i64 => Self::Int(v),
v: bool => Self::Int(v as i64),
v: f64 => Self::Float(v),
v: Str => Self::Str(EcoString::from(v)),
}
#[cfg(test)]
mod tests {
use std::str::FromStr;
use typst_utils::hash128;
use super::Decimal;
#[test]
fn test_decimals_with_equal_scales_hash_identically() {
let a = Decimal::from_str("3.14").unwrap();
let b = Decimal::from_str("3.14").unwrap();
assert_eq!(a, b);
assert_eq!(hash128(&a), hash128(&b));
}
#[test]
fn test_decimals_with_different_scales_hash_differently() {
let a = Decimal::from_str("3.140").unwrap();
let b = Decimal::from_str("3.14000").unwrap();
assert_eq!(a, b);
assert_ne!(hash128(&a), hash128(&b));
}
#[track_caller]
fn test_round(value: &str, digits: i32, expected: &str) {
assert_eq!(
Decimal::from_str(value).unwrap().round(digits),
Some(Decimal::from_str(expected).unwrap()),
);
}
#[test]
fn test_decimal_positive_round() {
test_round("312.55553", 0, "313.00000");
test_round("312.55553", 3, "312.556");
test_round("312.5555300000", 3, "312.556");
test_round("-312.55553", 3, "-312.556");
test_round("312.55553", 28, "312.55553");
test_round("312.55553", 2341, "312.55553");
test_round("-312.55553", 2341, "-312.55553");
}
#[test]
fn test_decimal_negative_round() {
test_round("4596.55553", -1, "4600");
test_round("4596.555530000000", -1, "4600");
test_round("-4596.55553", -3, "-5000");
test_round("4596.55553", -28, "0");
test_round("-4596.55553", -2341, "0");
assert_eq!(Decimal::MAX.round(-1), None);
}
}