typst_library/foundations/calc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
//! Calculations and processing of numeric values.
use std::cmp;
use std::cmp::Ordering;
use az::SaturatingAs;
use typst_syntax::{Span, Spanned};
use typst_utils::{round_int_with_precision, round_with_precision};
use crate::diag::{bail, At, HintedString, SourceResult, StrResult};
use crate::foundations::{cast, func, ops, Decimal, IntoValue, Module, Scope, Value};
use crate::layout::{Angle, Fr, Length, Ratio};
/// A module with calculation definitions.
pub fn module() -> Module {
let mut scope = Scope::new();
scope.define_func::<abs>();
scope.define_func::<pow>();
scope.define_func::<exp>();
scope.define_func::<sqrt>();
scope.define_func::<root>();
scope.define_func::<sin>();
scope.define_func::<cos>();
scope.define_func::<tan>();
scope.define_func::<asin>();
scope.define_func::<acos>();
scope.define_func::<atan>();
scope.define_func::<atan2>();
scope.define_func::<sinh>();
scope.define_func::<cosh>();
scope.define_func::<tanh>();
scope.define_func::<log>();
scope.define_func::<ln>();
scope.define_func::<fact>();
scope.define_func::<perm>();
scope.define_func::<binom>();
scope.define_func::<gcd>();
scope.define_func::<lcm>();
scope.define_func::<floor>();
scope.define_func::<ceil>();
scope.define_func::<trunc>();
scope.define_func::<fract>();
scope.define_func::<round>();
scope.define_func::<clamp>();
scope.define_func::<min>();
scope.define_func::<max>();
scope.define_func::<even>();
scope.define_func::<odd>();
scope.define_func::<rem>();
scope.define_func::<div_euclid>();
scope.define_func::<rem_euclid>();
scope.define_func::<quo>();
scope.define_func::<norm>();
scope.define("inf", f64::INFINITY);
scope.define("pi", std::f64::consts::PI);
scope.define("tau", std::f64::consts::TAU);
scope.define("e", std::f64::consts::E);
Module::new("calc", scope)
}
/// Calculates the absolute value of a numeric value.
///
/// ```example
/// #calc.abs(-5) \
/// #calc.abs(5pt - 2cm) \
/// #calc.abs(2fr) \
/// #calc.abs(decimal("-342.440"))
/// ```
#[func(title = "Absolute")]
pub fn abs(
/// The value whose absolute value to calculate.
value: ToAbs,
) -> Value {
value.0
}
/// A value of which the absolute value can be taken.
pub struct ToAbs(Value);
cast! {
ToAbs,
v: i64 => Self(v.abs().into_value()),
v: f64 => Self(v.abs().into_value()),
v: Length => Self(Value::Length(v.try_abs()
.ok_or("cannot take absolute value of this length")?)),
v: Angle => Self(Value::Angle(v.abs())),
v: Ratio => Self(Value::Ratio(v.abs())),
v: Fr => Self(Value::Fraction(v.abs())),
v: Decimal => Self(Value::Decimal(v.abs()))
}
/// Raises a value to some exponent.
///
/// ```example
/// #calc.pow(2, 3) \
/// #calc.pow(decimal("2.5"), 2)
/// ```
#[func(title = "Power")]
pub fn pow(
span: Span,
/// The base of the power.
///
/// If this is a [`decimal`], the exponent can only be an [integer]($int).
base: DecNum,
/// The exponent of the power.
exponent: Spanned<Num>,
) -> SourceResult<DecNum> {
match exponent.v {
_ if exponent.v.float() == 0.0 && base.is_zero() => {
bail!(span, "zero to the power of zero is undefined")
}
Num::Int(i) if i32::try_from(i).is_err() => {
bail!(exponent.span, "exponent is too large")
}
Num::Float(f) if !f.is_normal() && f != 0.0 => {
bail!(exponent.span, "exponent may not be infinite, subnormal, or NaN")
}
_ => {}
};
match (base, exponent.v) {
(DecNum::Int(a), Num::Int(b)) if b >= 0 => a
.checked_pow(b as u32)
.map(DecNum::Int)
.ok_or_else(too_large)
.at(span),
(DecNum::Decimal(a), Num::Int(b)) => {
a.checked_powi(b).map(DecNum::Decimal).ok_or_else(too_large).at(span)
}
(a, b) => {
let Some(a) = a.float() else {
return Err(cant_apply_to_decimal_and_float()).at(span);
};
let result = if a == std::f64::consts::E {
b.float().exp()
} else if a == 2.0 {
b.float().exp2()
} else if let Num::Int(b) = b {
a.powi(b as i32)
} else {
a.powf(b.float())
};
if result.is_nan() {
bail!(span, "the result is not a real number")
}
Ok(DecNum::Float(result))
}
}
}
/// Raises a value to some exponent of e.
///
/// ```example
/// #calc.exp(1)
/// ```
#[func(title = "Exponential")]
pub fn exp(
span: Span,
/// The exponent of the power.
exponent: Spanned<Num>,
) -> SourceResult<f64> {
match exponent.v {
Num::Int(i) if i32::try_from(i).is_err() => {
bail!(exponent.span, "exponent is too large")
}
Num::Float(f) if !f.is_normal() && f != 0.0 => {
bail!(exponent.span, "exponent may not be infinite, subnormal, or NaN")
}
_ => {}
}
let result = exponent.v.float().exp();
if result.is_nan() {
bail!(span, "the result is not a real number")
}
Ok(result)
}
/// Calculates the square root of a number.
///
/// ```example
/// #calc.sqrt(16) \
/// #calc.sqrt(2.5)
/// ```
#[func(title = "Square Root")]
pub fn sqrt(
/// The number whose square root to calculate. Must be non-negative.
value: Spanned<Num>,
) -> SourceResult<f64> {
if value.v.float() < 0.0 {
bail!(value.span, "cannot take square root of negative number");
}
Ok(value.v.float().sqrt())
}
/// Calculates the real nth root of a number.
///
/// If the number is negative, then n must be odd.
///
/// ```example
/// #calc.root(16.0, 4) \
/// #calc.root(27.0, 3)
/// ```
#[func]
pub fn root(
/// The expression to take the root of
radicand: f64,
/// Which root of the radicand to take
index: Spanned<i64>,
) -> SourceResult<f64> {
if index.v == 0 {
bail!(index.span, "cannot take the 0th root of a number");
} else if radicand < 0.0 {
if index.v % 2 == 0 {
bail!(
index.span,
"negative numbers do not have a real nth root when n is even"
);
} else {
Ok(-(-radicand).powf(1.0 / index.v as f64))
}
} else {
Ok(radicand.powf(1.0 / index.v as f64))
}
}
/// Calculates the sine of an angle.
///
/// When called with an integer or a float, they will be interpreted as
/// radians.
///
/// ```example
/// #calc.sin(1.5) \
/// #calc.sin(90deg)
/// ```
#[func(title = "Sine")]
pub fn sin(
/// The angle whose sine to calculate.
angle: AngleLike,
) -> f64 {
match angle {
AngleLike::Angle(a) => a.sin(),
AngleLike::Int(n) => (n as f64).sin(),
AngleLike::Float(n) => n.sin(),
}
}
/// Calculates the cosine of an angle.
///
/// When called with an integer or a float, they will be interpreted as
/// radians.
///
/// ```example
/// #calc.cos(1.5) \
/// #calc.cos(90deg)
/// ```
#[func(title = "Cosine")]
pub fn cos(
/// The angle whose cosine to calculate.
angle: AngleLike,
) -> f64 {
match angle {
AngleLike::Angle(a) => a.cos(),
AngleLike::Int(n) => (n as f64).cos(),
AngleLike::Float(n) => n.cos(),
}
}
/// Calculates the tangent of an angle.
///
/// When called with an integer or a float, they will be interpreted as
/// radians.
///
/// ```example
/// #calc.tan(1.5) \
/// #calc.tan(90deg)
/// ```
#[func(title = "Tangent")]
pub fn tan(
/// The angle whose tangent to calculate.
angle: AngleLike,
) -> f64 {
match angle {
AngleLike::Angle(a) => a.tan(),
AngleLike::Int(n) => (n as f64).tan(),
AngleLike::Float(n) => n.tan(),
}
}
/// Calculates the arcsine of a number.
///
/// ```example
/// #calc.asin(0) \
/// #calc.asin(1)
/// ```
#[func(title = "Arcsine")]
pub fn asin(
/// The number whose arcsine to calculate. Must be between -1 and 1.
value: Spanned<Num>,
) -> SourceResult<Angle> {
let val = value.v.float();
if val < -1.0 || val > 1.0 {
bail!(value.span, "value must be between -1 and 1");
}
Ok(Angle::rad(val.asin()))
}
/// Calculates the arccosine of a number.
///
/// ```example
/// #calc.acos(0) \
/// #calc.acos(1)
/// ```
#[func(title = "Arccosine")]
pub fn acos(
/// The number whose arcsine to calculate. Must be between -1 and 1.
value: Spanned<Num>,
) -> SourceResult<Angle> {
let val = value.v.float();
if val < -1.0 || val > 1.0 {
bail!(value.span, "value must be between -1 and 1");
}
Ok(Angle::rad(val.acos()))
}
/// Calculates the arctangent of a number.
///
/// ```example
/// #calc.atan(0) \
/// #calc.atan(1)
/// ```
#[func(title = "Arctangent")]
pub fn atan(
/// The number whose arctangent to calculate.
value: Num,
) -> Angle {
Angle::rad(value.float().atan())
}
/// Calculates the four-quadrant arctangent of a coordinate.
///
/// The arguments are `(x, y)`, not `(y, x)`.
///
/// ```example
/// #calc.atan2(1, 1) \
/// #calc.atan2(-2, -3)
/// ```
#[func(title = "Four-quadrant Arctangent")]
pub fn atan2(
/// The X coordinate.
x: Num,
/// The Y coordinate.
y: Num,
) -> Angle {
Angle::rad(f64::atan2(y.float(), x.float()))
}
/// Calculates the hyperbolic sine of a hyperbolic angle.
///
/// ```example
/// #calc.sinh(0) \
/// #calc.sinh(1.5)
/// ```
#[func(title = "Hyperbolic Sine")]
pub fn sinh(
/// The hyperbolic angle whose hyperbolic sine to calculate.
value: f64,
) -> f64 {
value.sinh()
}
/// Calculates the hyperbolic cosine of a hyperbolic angle.
///
/// ```example
/// #calc.cosh(0) \
/// #calc.cosh(1.5)
/// ```
#[func(title = "Hyperbolic Cosine")]
pub fn cosh(
/// The hyperbolic angle whose hyperbolic cosine to calculate.
value: f64,
) -> f64 {
value.cosh()
}
/// Calculates the hyperbolic tangent of an hyperbolic angle.
///
/// ```example
/// #calc.tanh(0) \
/// #calc.tanh(1.5)
/// ```
#[func(title = "Hyperbolic Tangent")]
pub fn tanh(
/// The hyperbolic angle whose hyperbolic tangent to calculate.
value: f64,
) -> f64 {
value.tanh()
}
/// Calculates the logarithm of a number.
///
/// If the base is not specified, the logarithm is calculated in base 10.
///
/// ```example
/// #calc.log(100)
/// ```
#[func(title = "Logarithm")]
pub fn log(
span: Span,
/// The number whose logarithm to calculate. Must be strictly positive.
value: Spanned<Num>,
/// The base of the logarithm. May not be zero.
#[named]
#[default(Spanned::new(10.0, Span::detached()))]
base: Spanned<f64>,
) -> SourceResult<f64> {
let number = value.v.float();
if number <= 0.0 {
bail!(value.span, "value must be strictly positive")
}
if !base.v.is_normal() {
bail!(base.span, "base may not be zero, NaN, infinite, or subnormal")
}
let result = if base.v == std::f64::consts::E {
number.ln()
} else if base.v == 2.0 {
number.log2()
} else if base.v == 10.0 {
number.log10()
} else {
number.log(base.v)
};
if result.is_infinite() || result.is_nan() {
bail!(span, "the result is not a real number")
}
Ok(result)
}
/// Calculates the natural logarithm of a number.
///
/// ```example
/// #calc.ln(calc.e)
/// ```
#[func(title = "Natural Logarithm")]
pub fn ln(
span: Span,
/// The number whose logarithm to calculate. Must be strictly positive.
value: Spanned<Num>,
) -> SourceResult<f64> {
let number = value.v.float();
if number <= 0.0 {
bail!(value.span, "value must be strictly positive")
}
let result = number.ln();
if result.is_infinite() {
bail!(span, "result close to -inf")
}
Ok(result)
}
/// Calculates the factorial of a number.
///
/// ```example
/// #calc.fact(5)
/// ```
#[func(title = "Factorial")]
pub fn fact(
/// The number whose factorial to calculate. Must be non-negative.
number: u64,
) -> StrResult<i64> {
Ok(fact_impl(1, number).ok_or_else(too_large)?)
}
/// Calculates a permutation.
///
/// Returns the `k`-permutation of `n`, or the number of ways to choose `k`
/// items from a set of `n` with regard to order.
///
/// ```example
/// $ "perm"(n, k) &= n!/((n - k)!) \
/// "perm"(5, 3) &= #calc.perm(5, 3) $
/// ```
#[func(title = "Permutation")]
pub fn perm(
/// The base number. Must be non-negative.
base: u64,
/// The number of permutations. Must be non-negative.
numbers: u64,
) -> StrResult<i64> {
// By convention.
if base < numbers {
return Ok(0);
}
Ok(fact_impl(base - numbers + 1, base).ok_or_else(too_large)?)
}
/// Calculates the product of a range of numbers. Used to calculate
/// permutations. Returns None if the result is larger than `i64::MAX`
fn fact_impl(start: u64, end: u64) -> Option<i64> {
// By convention
if end + 1 < start {
return Some(0);
}
let real_start: u64 = cmp::max(1, start);
let mut count: u64 = 1;
for i in real_start..=end {
count = count.checked_mul(i)?;
}
count.try_into().ok()
}
/// Calculates a binomial coefficient.
///
/// Returns the `k`-combination of `n`, or the number of ways to choose `k`
/// items from a set of `n` without regard to order.
///
/// ```example
/// #calc.binom(10, 5)
/// ```
#[func(title = "Binomial")]
pub fn binom(
/// The upper coefficient. Must be non-negative.
n: u64,
/// The lower coefficient. Must be non-negative.
k: u64,
) -> StrResult<i64> {
Ok(binom_impl(n, k).ok_or_else(too_large)?)
}
/// Calculates a binomial coefficient, with `n` the upper coefficient and `k`
/// the lower coefficient. Returns `None` if the result is larger than
/// `i64::MAX`
fn binom_impl(n: u64, k: u64) -> Option<i64> {
if k > n {
return Some(0);
}
// By symmetry
let real_k = cmp::min(n - k, k);
if real_k == 0 {
return Some(1);
}
let mut result: u64 = 1;
for i in 0..real_k {
result = result.checked_mul(n - i)?.checked_div(i + 1)?;
}
result.try_into().ok()
}
/// Calculates the greatest common divisor of two integers.
///
/// ```example
/// #calc.gcd(7, 42)
/// ```
#[func(title = "Greatest Common Divisor")]
pub fn gcd(
/// The first integer.
a: i64,
/// The second integer.
b: i64,
) -> i64 {
let (mut a, mut b) = (a, b);
while b != 0 {
let temp = b;
b = a % b;
a = temp;
}
a.abs()
}
/// Calculates the least common multiple of two integers.
///
/// ```example
/// #calc.lcm(96, 13)
/// ```
#[func(title = "Least Common Multiple")]
pub fn lcm(
/// The first integer.
a: i64,
/// The second integer.
b: i64,
) -> StrResult<i64> {
if a == b {
return Ok(a.abs());
}
Ok(a.checked_div(gcd(a, b))
.and_then(|gcd| gcd.checked_mul(b))
.map(|v| v.abs())
.ok_or_else(too_large)?)
}
/// Rounds a number down to the nearest integer.
///
/// If the number is already an integer, it is returned unchanged.
///
/// Note that this function will always return an [integer]($int), and will
/// error if the resulting [`float`] or [`decimal`] is larger than the maximum
/// 64-bit signed integer or smaller than the minimum for that type.
///
/// ```example
/// #calc.floor(500.1)
/// #assert(calc.floor(3) == 3)
/// #assert(calc.floor(3.14) == 3)
/// #assert(calc.floor(decimal("-3.14")) == -4)
/// ```
#[func]
pub fn floor(
/// The number to round down.
value: DecNum,
) -> StrResult<i64> {
match value {
DecNum::Int(n) => Ok(n),
DecNum::Float(n) => Ok(crate::foundations::convert_float_to_int(n.floor())
.map_err(|_| too_large())?),
DecNum::Decimal(n) => Ok(i64::try_from(n.floor()).map_err(|_| too_large())?),
}
}
/// Rounds a number up to the nearest integer.
///
/// If the number is already an integer, it is returned unchanged.
///
/// Note that this function will always return an [integer]($int), and will
/// error if the resulting [`float`] or [`decimal`] is larger than the maximum
/// 64-bit signed integer or smaller than the minimum for that type.
///
/// ```example
/// #calc.ceil(500.1)
/// #assert(calc.ceil(3) == 3)
/// #assert(calc.ceil(3.14) == 4)
/// #assert(calc.ceil(decimal("-3.14")) == -3)
/// ```
#[func]
pub fn ceil(
/// The number to round up.
value: DecNum,
) -> StrResult<i64> {
match value {
DecNum::Int(n) => Ok(n),
DecNum::Float(n) => Ok(crate::foundations::convert_float_to_int(n.ceil())
.map_err(|_| too_large())?),
DecNum::Decimal(n) => Ok(i64::try_from(n.ceil()).map_err(|_| too_large())?),
}
}
/// Returns the integer part of a number.
///
/// If the number is already an integer, it is returned unchanged.
///
/// Note that this function will always return an [integer]($int), and will
/// error if the resulting [`float`] or [`decimal`] is larger than the maximum
/// 64-bit signed integer or smaller than the minimum for that type.
///
/// ```example
/// #calc.trunc(15.9)
/// #assert(calc.trunc(3) == 3)
/// #assert(calc.trunc(-3.7) == -3)
/// #assert(calc.trunc(decimal("8493.12949582390")) == 8493)
/// ```
#[func(title = "Truncate")]
pub fn trunc(
/// The number to truncate.
value: DecNum,
) -> StrResult<i64> {
match value {
DecNum::Int(n) => Ok(n),
DecNum::Float(n) => Ok(crate::foundations::convert_float_to_int(n.trunc())
.map_err(|_| too_large())?),
DecNum::Decimal(n) => Ok(i64::try_from(n.trunc()).map_err(|_| too_large())?),
}
}
/// Returns the fractional part of a number.
///
/// If the number is an integer, returns `0`.
///
/// ```example
/// #calc.fract(-3.1)
/// #assert(calc.fract(3) == 0)
/// #assert(calc.fract(decimal("234.23949211")) == decimal("0.23949211"))
/// ```
#[func(title = "Fractional")]
pub fn fract(
/// The number to truncate.
value: DecNum,
) -> DecNum {
match value {
DecNum::Int(_) => DecNum::Int(0),
DecNum::Float(n) => DecNum::Float(n.fract()),
DecNum::Decimal(n) => DecNum::Decimal(n.fract()),
}
}
/// Rounds a number to the nearest integer away from zero.
///
/// Optionally, a number of decimal places can be specified.
///
/// If the number of digits is negative, its absolute value will indicate the
/// amount of significant integer digits to remove before the decimal point.
///
/// Note that this function will return the same type as the operand. That is,
/// applying `round` to a [`float`] will return a `float`, and to a [`decimal`],
/// another `decimal`. You may explicitly convert the output of this function to
/// an integer with [`int`], but note that such a conversion will error if the
/// `float` or `decimal` is larger than the maximum 64-bit signed integer or
/// smaller than the minimum integer.
///
/// In addition, this function can error if there is an attempt to round beyond
/// the maximum or minimum integer or `decimal`. If the number is a `float`,
/// such an attempt will cause `{float.inf}` or `{-float.inf}` to be returned
/// for maximum and minimum respectively.
///
/// ```example
/// #calc.round(3.1415, digits: 2)
/// #assert(calc.round(3) == 3)
/// #assert(calc.round(3.14) == 3)
/// #assert(calc.round(3.5) == 4.0)
/// #assert(calc.round(3333.45, digits: -2) == 3300.0)
/// #assert(calc.round(-48953.45, digits: -3) == -49000.0)
/// #assert(calc.round(3333, digits: -2) == 3300)
/// #assert(calc.round(-48953, digits: -3) == -49000)
/// #assert(calc.round(decimal("-6.5")) == decimal("-7"))
/// #assert(calc.round(decimal("7.123456789"), digits: 6) == decimal("7.123457"))
/// #assert(calc.round(decimal("3333.45"), digits: -2) == decimal("3300"))
/// #assert(calc.round(decimal("-48953.45"), digits: -3) == decimal("-49000"))
/// ```
#[func]
pub fn round(
/// The number to round.
value: DecNum,
/// If positive, the number of decimal places.
///
/// If negative, the number of significant integer digits that should be
/// removed before the decimal point.
#[named]
#[default(0)]
digits: i64,
) -> StrResult<DecNum> {
match value {
DecNum::Int(n) => Ok(DecNum::Int(
round_int_with_precision(n, digits.saturating_as::<i16>())
.ok_or_else(too_large)?,
)),
DecNum::Float(n) => {
Ok(DecNum::Float(round_with_precision(n, digits.saturating_as::<i16>())))
}
DecNum::Decimal(n) => Ok(DecNum::Decimal(
n.round(digits.saturating_as::<i32>()).ok_or_else(too_large)?,
)),
}
}
/// Clamps a number between a minimum and maximum value.
///
/// ```example
/// #calc.clamp(5, 0, 4)
/// #assert(calc.clamp(5, 0, 10) == 5)
/// #assert(calc.clamp(5, 6, 10) == 6)
/// #assert(calc.clamp(decimal("5.45"), 2, decimal("45.9")) == decimal("5.45"))
/// #assert(calc.clamp(decimal("5.45"), decimal("6.75"), 12) == decimal("6.75"))
/// ```
#[func]
pub fn clamp(
span: Span,
/// The number to clamp.
value: DecNum,
/// The inclusive minimum value.
min: DecNum,
/// The inclusive maximum value.
max: Spanned<DecNum>,
) -> SourceResult<DecNum> {
// Ignore if there are incompatible types (decimal and float) since that
// will cause `apply3` below to error before calling clamp, avoiding a
// panic.
if min
.apply2(max.v, |min, max| max < min, |min, max| max < min, |min, max| max < min)
.unwrap_or(false)
{
bail!(max.span, "max must be greater than or equal to min")
}
value
.apply3(min, max.v, i64::clamp, f64::clamp, Decimal::clamp)
.ok_or_else(cant_apply_to_decimal_and_float)
.at(span)
}
/// Determines the minimum of a sequence of values.
///
/// ```example
/// #calc.min(1, -3, -5, 20, 3, 6) \
/// #calc.min("typst", "is", "cool")
/// ```
#[func(title = "Minimum")]
pub fn min(
span: Span,
/// The sequence of values from which to extract the minimum.
/// Must not be empty.
#[variadic]
values: Vec<Spanned<Value>>,
) -> SourceResult<Value> {
minmax(span, values, Ordering::Less)
}
/// Determines the maximum of a sequence of values.
///
/// ```example
/// #calc.max(1, -3, -5, 20, 3, 6) \
/// #calc.max("typst", "is", "cool")
/// ```
#[func(title = "Maximum")]
pub fn max(
span: Span,
/// The sequence of values from which to extract the maximum.
/// Must not be empty.
#[variadic]
values: Vec<Spanned<Value>>,
) -> SourceResult<Value> {
minmax(span, values, Ordering::Greater)
}
/// Find the minimum or maximum of a sequence of values.
fn minmax(
span: Span,
values: Vec<Spanned<Value>>,
goal: Ordering,
) -> SourceResult<Value> {
let mut iter = values.into_iter();
let Some(Spanned { v: mut extremum, .. }) = iter.next() else {
bail!(span, "expected at least one value");
};
for Spanned { v, span } in iter {
let ordering = ops::compare(&v, &extremum).at(span)?;
if ordering == goal {
extremum = v;
}
}
Ok(extremum)
}
/// Determines whether an integer is even.
///
/// ```example
/// #calc.even(4) \
/// #calc.even(5) \
/// #range(10).filter(calc.even)
/// ```
#[func]
pub fn even(
/// The number to check for evenness.
value: i64,
) -> bool {
value % 2 == 0
}
/// Determines whether an integer is odd.
///
/// ```example
/// #calc.odd(4) \
/// #calc.odd(5) \
/// #range(10).filter(calc.odd)
/// ```
#[func]
pub fn odd(
/// The number to check for oddness.
value: i64,
) -> bool {
value % 2 != 0
}
/// Calculates the remainder of two numbers.
///
/// The value `calc.rem(x, y)` always has the same sign as `x`, and is smaller
/// in magnitude than `y`.
///
/// This can error if given a [`decimal`] input and the dividend is too small in
/// magnitude compared to the divisor.
///
/// ```example
/// #calc.rem(7, 3) \
/// #calc.rem(7, -3) \
/// #calc.rem(-7, 3) \
/// #calc.rem(-7, -3) \
/// #calc.rem(1.75, 0.5)
/// ```
#[func(title = "Remainder")]
pub fn rem(
span: Span,
/// The dividend of the remainder.
dividend: DecNum,
/// The divisor of the remainder.
divisor: Spanned<DecNum>,
) -> SourceResult<DecNum> {
if divisor.v.is_zero() {
bail!(divisor.span, "divisor must not be zero");
}
dividend
.apply2(
divisor.v,
|a, b| Some(DecNum::Int(a % b)),
|a, b| Some(DecNum::Float(a % b)),
|a, b| a.checked_rem(b).map(DecNum::Decimal),
)
.ok_or_else(cant_apply_to_decimal_and_float)
.at(span)?
.ok_or("dividend too small compared to divisor")
.at(span)
}
/// Performs euclidean division of two numbers.
///
/// The result of this computation is that of a division rounded to the integer
/// `{n}` such that the dividend is greater than or equal to `{n}` times the divisor.
///
/// ```example
/// #calc.div-euclid(7, 3) \
/// #calc.div-euclid(7, -3) \
/// #calc.div-euclid(-7, 3) \
/// #calc.div-euclid(-7, -3) \
/// #calc.div-euclid(1.75, 0.5) \
/// #calc.div-euclid(decimal("1.75"), decimal("0.5"))
/// ```
#[func(title = "Euclidean Division")]
pub fn div_euclid(
span: Span,
/// The dividend of the division.
dividend: DecNum,
/// The divisor of the division.
divisor: Spanned<DecNum>,
) -> SourceResult<DecNum> {
if divisor.v.is_zero() {
bail!(divisor.span, "divisor must not be zero");
}
dividend
.apply2(
divisor.v,
|a, b| Some(DecNum::Int(a.div_euclid(b))),
|a, b| Some(DecNum::Float(a.div_euclid(b))),
|a, b| a.checked_div_euclid(b).map(DecNum::Decimal),
)
.ok_or_else(cant_apply_to_decimal_and_float)
.at(span)?
.ok_or_else(too_large)
.at(span)
}
/// This calculates the least nonnegative remainder of a division.
///
/// Warning: Due to a floating point round-off error, the remainder may equal
/// the absolute value of the divisor if the dividend is much smaller in
/// magnitude than the divisor and the dividend is negative. This only applies
/// for floating point inputs.
///
/// In addition, this can error if given a [`decimal`] input and the dividend is
/// too small in magnitude compared to the divisor.
///
/// ```example
/// #calc.rem-euclid(7, 3) \
/// #calc.rem-euclid(7, -3) \
/// #calc.rem-euclid(-7, 3) \
/// #calc.rem-euclid(-7, -3) \
/// #calc.rem-euclid(1.75, 0.5) \
/// #calc.rem-euclid(decimal("1.75"), decimal("0.5"))
/// ```
#[func(title = "Euclidean Remainder", keywords = ["modulo", "modulus"])]
pub fn rem_euclid(
span: Span,
/// The dividend of the remainder.
dividend: DecNum,
/// The divisor of the remainder.
divisor: Spanned<DecNum>,
) -> SourceResult<DecNum> {
if divisor.v.is_zero() {
bail!(divisor.span, "divisor must not be zero");
}
dividend
.apply2(
divisor.v,
|a, b| Some(DecNum::Int(a.rem_euclid(b))),
|a, b| Some(DecNum::Float(a.rem_euclid(b))),
|a, b| a.checked_rem_euclid(b).map(DecNum::Decimal),
)
.ok_or_else(cant_apply_to_decimal_and_float)
.at(span)?
.ok_or("dividend too small compared to divisor")
.at(span)
}
/// Calculates the quotient (floored division) of two numbers.
///
/// Note that this function will always return an [integer]($int), and will
/// error if the resulting [`float`] or [`decimal`] is larger than the maximum
/// 64-bit signed integer or smaller than the minimum for that type.
///
/// ```example
/// $ "quo"(a, b) &= floor(a/b) \
/// "quo"(14, 5) &= #calc.quo(14, 5) \
/// "quo"(3.46, 0.5) &= #calc.quo(3.46, 0.5) $
/// ```
#[func(title = "Quotient")]
pub fn quo(
span: Span,
/// The dividend of the quotient.
dividend: DecNum,
/// The divisor of the quotient.
divisor: Spanned<DecNum>,
) -> SourceResult<i64> {
if divisor.v.is_zero() {
bail!(divisor.span, "divisor must not be zero");
}
let divided = dividend
.apply2(
divisor.v,
|a, b| Some(DecNum::Int(a / b)),
|a, b| Some(DecNum::Float(a / b)),
|a, b| a.checked_div(b).map(DecNum::Decimal),
)
.ok_or_else(cant_apply_to_decimal_and_float)
.at(span)?
.ok_or_else(too_large)
.at(span)?;
floor(divided).at(span)
}
/// Calculates the p-norm of a sequence of values.
///
/// ```example
/// #calc.norm(1, 2, -3, 0.5) \
/// #calc.norm(p: 3, 1, 2)
/// ```
#[func(title = "𝑝-Norm")]
pub fn norm(
/// The p value to calculate the p-norm of.
#[named]
#[default(Spanned::new(2.0, Span::detached()))]
p: Spanned<f64>,
/// The sequence of values from which to calculate the p-norm.
/// Returns `0.0` if empty.
#[variadic]
values: Vec<f64>,
) -> SourceResult<f64> {
if p.v <= 0.0 {
bail!(p.span, "p must be greater than zero");
}
// Create an iterator over the absolute values.
let abs = values.into_iter().map(f64::abs);
Ok(if p.v.is_infinite() {
// When p is infinity, the p-norm is the maximum of the absolute values.
abs.max_by(|a, b| a.total_cmp(b)).unwrap_or(0.0)
} else {
abs.map(|v| v.powf(p.v)).sum::<f64>().powf(1.0 / p.v)
})
}
/// A value which can be passed to functions that work with integers and floats.
#[derive(Debug, Copy, Clone)]
pub enum Num {
Int(i64),
Float(f64),
}
impl Num {
fn float(self) -> f64 {
match self {
Self::Int(v) => v as f64,
Self::Float(v) => v,
}
}
}
cast! {
Num,
self => match self {
Self::Int(v) => v.into_value(),
Self::Float(v) => v.into_value(),
},
v: i64 => Self::Int(v),
v: f64 => Self::Float(v),
}
/// A value which can be passed to functions that work with integers, floats,
/// and decimals.
#[derive(Debug, Copy, Clone)]
pub enum DecNum {
Int(i64),
Float(f64),
Decimal(Decimal),
}
impl DecNum {
/// Checks if this number is equivalent to zero.
fn is_zero(self) -> bool {
match self {
Self::Int(i) => i == 0,
Self::Float(f) => f == 0.0,
Self::Decimal(d) => d.is_zero(),
}
}
/// If this `DecNum` holds an integer or float, returns a float.
/// Otherwise, returns `None`.
fn float(self) -> Option<f64> {
match self {
Self::Int(i) => Some(i as f64),
Self::Float(f) => Some(f),
Self::Decimal(_) => None,
}
}
/// If this `DecNum` holds an integer or decimal, returns a decimal.
/// Otherwise, returns `None`.
fn decimal(self) -> Option<Decimal> {
match self {
Self::Int(i) => Some(Decimal::from(i)),
Self::Float(_) => None,
Self::Decimal(d) => Some(d),
}
}
/// Tries to apply a function to two decimal or numeric arguments.
///
/// Fails with `None` if one is a float and the other is a decimal.
fn apply2<T>(
self,
other: Self,
int: impl FnOnce(i64, i64) -> T,
float: impl FnOnce(f64, f64) -> T,
decimal: impl FnOnce(Decimal, Decimal) -> T,
) -> Option<T> {
match (self, other) {
(Self::Int(a), Self::Int(b)) => Some(int(a, b)),
(Self::Decimal(a), Self::Decimal(b)) => Some(decimal(a, b)),
(Self::Decimal(a), Self::Int(b)) => Some(decimal(a, Decimal::from(b))),
(Self::Int(a), Self::Decimal(b)) => Some(decimal(Decimal::from(a), b)),
(a, b) => Some(float(a.float()?, b.float()?)),
}
}
/// Tries to apply a function to three decimal or numeric arguments.
///
/// Fails with `None` if one is a float and the other is a decimal.
fn apply3(
self,
other: Self,
third: Self,
int: impl FnOnce(i64, i64, i64) -> i64,
float: impl FnOnce(f64, f64, f64) -> f64,
decimal: impl FnOnce(Decimal, Decimal, Decimal) -> Decimal,
) -> Option<Self> {
match (self, other, third) {
(Self::Int(a), Self::Int(b), Self::Int(c)) => Some(Self::Int(int(a, b, c))),
(Self::Decimal(a), b, c) => {
Some(Self::Decimal(decimal(a, b.decimal()?, c.decimal()?)))
}
(a, Self::Decimal(b), c) => {
Some(Self::Decimal(decimal(a.decimal()?, b, c.decimal()?)))
}
(a, b, Self::Decimal(c)) => {
Some(Self::Decimal(decimal(a.decimal()?, b.decimal()?, c)))
}
(a, b, c) => Some(Self::Float(float(a.float()?, b.float()?, c.float()?))),
}
}
}
cast! {
DecNum,
self => match self {
Self::Int(v) => v.into_value(),
Self::Float(v) => v.into_value(),
Self::Decimal(v) => v.into_value(),
},
v: i64 => Self::Int(v),
v: f64 => Self::Float(v),
v: Decimal => Self::Decimal(v),
}
/// A value that can be passed to a trigonometric function.
pub enum AngleLike {
Int(i64),
Float(f64),
Angle(Angle),
}
cast! {
AngleLike,
v: i64 => Self::Int(v),
v: f64 => Self::Float(v),
v: Angle => Self::Angle(v),
}
/// The error message when the result is too large to be represented.
#[cold]
fn too_large() -> &'static str {
"the result is too large"
}
/// The hinted error message when trying to apply an operation to decimal and
/// float operands.
#[cold]
fn cant_apply_to_decimal_and_float() -> HintedString {
HintedString::new("cannot apply this operation to a decimal and a float".into())
.with_hint(
"if loss of precision is acceptable, explicitly cast the \
decimal to a float with `float(value)`",
)
}