typst_layout/
shapes.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
use std::f64::consts::SQRT_2;

use kurbo::{CubicBez, ParamCurveExtrema};
use typst_library::diag::{bail, SourceResult};
use typst_library::engine::Engine;
use typst_library::foundations::{Content, Packed, Resolve, Smart, StyleChain};
use typst_library::introspection::Locator;
use typst_library::layout::{
    Abs, Axes, Corner, Corners, Frame, FrameItem, Length, Point, Ratio, Region, Rel,
    Sides, Size,
};
use typst_library::visualize::{
    CircleElem, CloseMode, Curve, CurveComponent, CurveElem, EllipseElem, FillRule,
    FixedStroke, Geometry, LineElem, Paint, PathElem, PathVertex, PolygonElem, RectElem,
    Shape, SquareElem, Stroke,
};
use typst_syntax::Span;
use typst_utils::{Get, Numeric};

/// Layout the line.
#[typst_macros::time(span = elem.span())]
pub fn layout_line(
    elem: &Packed<LineElem>,
    _: &mut Engine,
    _: Locator,
    styles: StyleChain,
    region: Region,
) -> SourceResult<Frame> {
    let resolve = |axes: Axes<Rel<Abs>>| axes.zip_map(region.size, Rel::relative_to);
    let start = resolve(elem.start(styles));
    let delta = elem.end(styles).map(|end| resolve(end) - start).unwrap_or_else(|| {
        let length = elem.length(styles);
        let angle = elem.angle(styles);
        let x = angle.cos() * length;
        let y = angle.sin() * length;
        resolve(Axes::new(x, y))
    });

    let stroke = elem.stroke(styles).unwrap_or_default();
    let size = start.max(start + delta).max(Size::zero());

    if !size.is_finite() {
        bail!(elem.span(), "cannot create line with infinite length");
    }

    let mut frame = Frame::soft(size);
    let shape = Geometry::Line(delta.to_point()).stroked(stroke);
    frame.push(start.to_point(), FrameItem::Shape(shape, elem.span()));
    Ok(frame)
}

/// Layout the path.
#[typst_macros::time(span = elem.span())]
pub fn layout_path(
    elem: &Packed<PathElem>,
    _: &mut Engine,
    _: Locator,
    styles: StyleChain,
    region: Region,
) -> SourceResult<Frame> {
    let resolve = |axes: Axes<Rel<Length>>| {
        axes.resolve(styles).zip_map(region.size, Rel::relative_to).to_point()
    };

    let vertices = &elem.vertices;
    let points: Vec<Point> = vertices.iter().map(|c| resolve(c.vertex())).collect();

    let mut size = Size::zero();
    if points.is_empty() {
        return Ok(Frame::soft(size));
    }

    // Only create a path if there are more than zero points.
    // Construct a closed path given all points.
    let mut curve = Curve::new();
    curve.move_(points[0]);

    let mut add_cubic = |from_point: Point,
                         to_point: Point,
                         from: PathVertex,
                         to: PathVertex| {
        let from_control_point = resolve(from.control_point_from()) + from_point;
        let to_control_point = resolve(to.control_point_to()) + to_point;
        curve.cubic(from_control_point, to_control_point, to_point);

        let p0 = kurbo::Point::new(from_point.x.to_raw(), from_point.y.to_raw());
        let p1 = kurbo::Point::new(
            from_control_point.x.to_raw(),
            from_control_point.y.to_raw(),
        );
        let p2 =
            kurbo::Point::new(to_control_point.x.to_raw(), to_control_point.y.to_raw());
        let p3 = kurbo::Point::new(to_point.x.to_raw(), to_point.y.to_raw());
        let extrema = kurbo::CubicBez::new(p0, p1, p2, p3).bounding_box();
        size.x.set_max(Abs::raw(extrema.x1));
        size.y.set_max(Abs::raw(extrema.y1));
    };

    for (vertex_window, point_window) in vertices.windows(2).zip(points.windows(2)) {
        let from = vertex_window[0];
        let to = vertex_window[1];
        let from_point = point_window[0];
        let to_point = point_window[1];

        add_cubic(from_point, to_point, from, to);
    }

    if elem.closed(styles) {
        let from = *vertices.last().unwrap(); // We checked that we have at least one element.
        let to = vertices[0];
        let from_point = *points.last().unwrap();
        let to_point = points[0];

        add_cubic(from_point, to_point, from, to);
        curve.close();
    }

    if !size.is_finite() {
        bail!(elem.span(), "cannot create path with infinite length");
    }

    // Prepare fill and stroke.
    let fill = elem.fill(styles);
    let fill_rule = elem.fill_rule(styles);
    let stroke = match elem.stroke(styles) {
        Smart::Auto if fill.is_none() => Some(FixedStroke::default()),
        Smart::Auto => None,
        Smart::Custom(stroke) => stroke.map(Stroke::unwrap_or_default),
    };

    let mut frame = Frame::soft(size);
    let shape = Shape {
        geometry: Geometry::Curve(curve),
        stroke,
        fill,
        fill_rule,
    };
    frame.push(Point::zero(), FrameItem::Shape(shape, elem.span()));
    Ok(frame)
}

/// Layout the curve.
#[typst_macros::time(span = elem.span())]
pub fn layout_curve(
    elem: &Packed<CurveElem>,
    _: &mut Engine,
    _: Locator,
    styles: StyleChain,
    region: Region,
) -> SourceResult<Frame> {
    let mut builder = CurveBuilder::new(region, styles);

    for item in &elem.components {
        match item {
            CurveComponent::Move(element) => {
                let relative = element.relative(styles);
                let point = builder.resolve_point(element.start, relative);
                builder.move_(point);
            }

            CurveComponent::Line(element) => {
                let relative = element.relative(styles);
                let point = builder.resolve_point(element.end, relative);
                builder.line(point);
            }

            CurveComponent::Quad(element) => {
                let relative = element.relative(styles);
                let end = builder.resolve_point(element.end, relative);
                let control = match element.control {
                    Smart::Auto => {
                        control_c2q(builder.last_point, builder.last_control_from)
                    }
                    Smart::Custom(Some(p)) => builder.resolve_point(p, relative),
                    Smart::Custom(None) => end,
                };
                builder.quad(control, end);
            }

            CurveComponent::Cubic(element) => {
                let relative = element.relative(styles);
                let end = builder.resolve_point(element.end, relative);
                let c1 = match element.control_start {
                    Some(Smart::Custom(p)) => builder.resolve_point(p, relative),
                    Some(Smart::Auto) => builder.last_control_from,
                    None => builder.last_point,
                };
                let c2 = match element.control_end {
                    Some(p) => builder.resolve_point(p, relative),
                    None => end,
                };
                builder.cubic(c1, c2, end);
            }

            CurveComponent::Close(element) => {
                builder.close(element.mode(styles));
            }
        }
    }

    let (curve, size) = builder.finish();
    if curve.is_empty() {
        return Ok(Frame::soft(size));
    }

    if !size.is_finite() {
        bail!(elem.span(), "cannot create curve with infinite size");
    }

    // Prepare fill and stroke.
    let fill = elem.fill(styles);
    let fill_rule = elem.fill_rule(styles);
    let stroke = match elem.stroke(styles) {
        Smart::Auto if fill.is_none() => Some(FixedStroke::default()),
        Smart::Auto => None,
        Smart::Custom(stroke) => stroke.map(Stroke::unwrap_or_default),
    };

    let mut frame = Frame::soft(size);
    let shape = Shape {
        geometry: Geometry::Curve(curve),
        stroke,
        fill,
        fill_rule,
    };
    frame.push(Point::zero(), FrameItem::Shape(shape, elem.span()));
    Ok(frame)
}

/// Builds a `Curve` from a [`CurveElem`]'s parts.
struct CurveBuilder<'a> {
    /// The output curve.
    curve: Curve,
    /// The curve's bounds.
    size: Size,
    /// The region relative to which points are resolved.
    region: Region,
    /// The styles for the curve.
    styles: StyleChain<'a>,
    /// The next start point.
    start_point: Point,
    /// Mirror of the first cubic start control point (for closing).
    start_control_into: Point,
    /// The point we previously ended on.
    last_point: Point,
    /// Mirror of the last cubic control point (for auto control points).
    last_control_from: Point,
    /// Whether a component has been start. This does not mean that something
    /// has been added to `self.curve` yet.
    is_started: bool,
    /// Whether anything was added to `self.curve` for the current component.
    is_empty: bool,
}

impl<'a> CurveBuilder<'a> {
    /// Create a new curve builder.
    fn new(region: Region, styles: StyleChain<'a>) -> Self {
        Self {
            curve: Curve::new(),
            size: Size::zero(),
            region,
            styles,
            start_point: Point::zero(),
            start_control_into: Point::zero(),
            last_point: Point::zero(),
            last_control_from: Point::zero(),
            is_started: false,
            is_empty: true,
        }
    }

    /// Finish building, returning the curve and its bounding size.
    fn finish(self) -> (Curve, Size) {
        (self.curve, self.size)
    }

    /// Move to a point, starting a new segment.
    fn move_(&mut self, point: Point) {
        // Delay calling `curve.move` in case there is another move element
        // before any actual drawing.
        self.expand_bounds(point);
        self.start_point = point;
        self.start_control_into = point;
        self.last_point = point;
        self.last_control_from = point;
        self.is_started = true;
    }

    /// Add a line segment.
    fn line(&mut self, point: Point) {
        if self.is_empty {
            self.start_component();
            self.start_control_into = self.start_point;
        }
        self.curve.line(point);
        self.expand_bounds(point);
        self.last_point = point;
        self.last_control_from = point;
    }

    /// Add a quadratic curve segment.
    fn quad(&mut self, control: Point, end: Point) {
        let c1 = control_q2c(self.last_point, control);
        let c2 = control_q2c(end, control);
        self.cubic(c1, c2, end);
    }

    /// Add a cubic curve segment.
    fn cubic(&mut self, c1: Point, c2: Point, end: Point) {
        if self.is_empty {
            self.start_component();
            self.start_control_into = mirror_c(self.start_point, c1);
        }
        self.curve.cubic(c1, c2, end);

        let p0 = point_to_kurbo(self.last_point);
        let p1 = point_to_kurbo(c1);
        let p2 = point_to_kurbo(c2);
        let p3 = point_to_kurbo(end);
        let extrema = CubicBez::new(p0, p1, p2, p3).bounding_box();
        self.size.x.set_max(Abs::raw(extrema.x1));
        self.size.y.set_max(Abs::raw(extrema.y1));

        self.last_point = end;
        self.last_control_from = mirror_c(end, c2);
    }

    /// Close the curve if it was opened.
    fn close(&mut self, mode: CloseMode) {
        if self.is_started && !self.is_empty {
            if mode == CloseMode::Smooth {
                self.cubic(
                    self.last_control_from,
                    self.start_control_into,
                    self.start_point,
                );
            }
            self.curve.close();
            self.last_point = self.start_point;
            self.last_control_from = self.start_point;
        }
        self.is_started = false;
        self.is_empty = true;
    }

    /// Push the initial move component.
    fn start_component(&mut self) {
        self.curve.move_(self.start_point);
        self.is_empty = false;
        self.is_started = true;
    }

    /// Expand the curve's bounding box.
    fn expand_bounds(&mut self, point: Point) {
        self.size.x.set_max(point.x);
        self.size.y.set_max(point.y);
    }

    /// Resolve the point relative to the region.
    fn resolve_point(&self, point: Axes<Rel>, relative: bool) -> Point {
        let mut p = point
            .resolve(self.styles)
            .zip_map(self.region.size, Rel::relative_to)
            .to_point();
        if relative {
            p += self.last_point;
        }
        p
    }
}

/// Convert a cubic control point into a quadratic one.
fn control_c2q(p: Point, c: Point) -> Point {
    1.5 * c - 0.5 * p
}

/// Convert a quadratic control point into a cubic one.
fn control_q2c(p: Point, c: Point) -> Point {
    (p + 2.0 * c) / 3.0
}

/// Mirror a control point.
fn mirror_c(p: Point, c: Point) -> Point {
    2.0 * p - c
}

/// Convert a point to a `kurbo::Point`.
fn point_to_kurbo(point: Point) -> kurbo::Point {
    kurbo::Point::new(point.x.to_raw(), point.y.to_raw())
}

/// Layout the polygon.
#[typst_macros::time(span = elem.span())]
pub fn layout_polygon(
    elem: &Packed<PolygonElem>,
    _: &mut Engine,
    _: Locator,
    styles: StyleChain,
    region: Region,
) -> SourceResult<Frame> {
    let points: Vec<Point> = elem
        .vertices
        .iter()
        .map(|c| c.resolve(styles).zip_map(region.size, Rel::relative_to).to_point())
        .collect();

    let size = points.iter().fold(Point::zero(), |max, c| c.max(max)).to_size();
    if !size.is_finite() {
        bail!(elem.span(), "cannot create polygon with infinite size");
    }

    let mut frame = Frame::hard(size);

    // Only create a curve if there are more than zero points.
    if points.is_empty() {
        return Ok(frame);
    }

    // Prepare fill and stroke.
    let fill = elem.fill(styles);
    let fill_rule = elem.fill_rule(styles);
    let stroke = match elem.stroke(styles) {
        Smart::Auto if fill.is_none() => Some(FixedStroke::default()),
        Smart::Auto => None,
        Smart::Custom(stroke) => stroke.map(Stroke::unwrap_or_default),
    };

    // Construct a closed curve given all points.
    let mut curve = Curve::new();
    curve.move_(points[0]);
    for &point in &points[1..] {
        curve.line(point);
    }
    curve.close();

    let shape = Shape {
        geometry: Geometry::Curve(curve),
        stroke,
        fill,
        fill_rule,
    };
    frame.push(Point::zero(), FrameItem::Shape(shape, elem.span()));
    Ok(frame)
}

/// Lay out the rectangle.
#[typst_macros::time(span = elem.span())]
pub fn layout_rect(
    elem: &Packed<RectElem>,
    engine: &mut Engine,
    locator: Locator,
    styles: StyleChain,
    region: Region,
) -> SourceResult<Frame> {
    layout_shape(
        engine,
        locator,
        styles,
        region,
        ShapeKind::Rect,
        elem.body(styles),
        elem.fill(styles),
        elem.stroke(styles),
        elem.inset(styles),
        elem.outset(styles),
        elem.radius(styles),
        elem.span(),
    )
}

/// Lay out the square.
#[typst_macros::time(span = elem.span())]
pub fn layout_square(
    elem: &Packed<SquareElem>,
    engine: &mut Engine,
    locator: Locator,
    styles: StyleChain,
    region: Region,
) -> SourceResult<Frame> {
    layout_shape(
        engine,
        locator,
        styles,
        region,
        ShapeKind::Square,
        elem.body(styles),
        elem.fill(styles),
        elem.stroke(styles),
        elem.inset(styles),
        elem.outset(styles),
        elem.radius(styles),
        elem.span(),
    )
}

/// Lay out the ellipse.
#[typst_macros::time(span = elem.span())]
pub fn layout_ellipse(
    elem: &Packed<EllipseElem>,
    engine: &mut Engine,
    locator: Locator,
    styles: StyleChain,
    region: Region,
) -> SourceResult<Frame> {
    layout_shape(
        engine,
        locator,
        styles,
        region,
        ShapeKind::Ellipse,
        elem.body(styles),
        elem.fill(styles),
        elem.stroke(styles).map(|s| Sides::splat(Some(s))),
        elem.inset(styles),
        elem.outset(styles),
        Corners::splat(None),
        elem.span(),
    )
}

/// Lay out the circle.
#[typst_macros::time(span = elem.span())]
pub fn layout_circle(
    elem: &Packed<CircleElem>,
    engine: &mut Engine,
    locator: Locator,
    styles: StyleChain,
    region: Region,
) -> SourceResult<Frame> {
    layout_shape(
        engine,
        locator,
        styles,
        region,
        ShapeKind::Circle,
        elem.body(styles),
        elem.fill(styles),
        elem.stroke(styles).map(|s| Sides::splat(Some(s))),
        elem.inset(styles),
        elem.outset(styles),
        Corners::splat(None),
        elem.span(),
    )
}

/// A category of shape.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
enum ShapeKind {
    /// A rectangle with equal side lengths.
    Square,
    /// A quadrilateral with four right angles.
    Rect,
    /// An ellipse with coinciding foci.
    Circle,
    /// A curve around two focal points.
    Ellipse,
}

impl ShapeKind {
    /// Whether this shape kind is curvy.
    fn is_round(self) -> bool {
        matches!(self, Self::Circle | Self::Ellipse)
    }

    /// Whether this shape kind has equal side length.
    fn is_quadratic(self) -> bool {
        matches!(self, Self::Square | Self::Circle)
    }
}

/// Layout a shape.
#[allow(clippy::too_many_arguments)]
fn layout_shape(
    engine: &mut Engine,
    locator: Locator,
    styles: StyleChain,
    region: Region,
    kind: ShapeKind,
    body: &Option<Content>,
    fill: Option<Paint>,
    stroke: Smart<Sides<Option<Option<Stroke<Abs>>>>>,
    inset: Sides<Option<Rel<Abs>>>,
    outset: Sides<Option<Rel<Abs>>>,
    radius: Corners<Option<Rel<Abs>>>,
    span: Span,
) -> SourceResult<Frame> {
    let mut frame;
    if let Some(child) = body {
        let mut inset = inset.unwrap_or_default();
        if kind.is_round() {
            // Apply extra inset to round shapes.
            inset = inset.map(|v| v + Ratio::new(0.5 - SQRT_2 / 4.0));
        }
        let has_inset = !inset.is_zero();

        // Take the inset, if any, into account.
        let mut pod = region;
        if has_inset {
            pod.size = crate::pad::shrink(region.size, &inset);
        }

        // If the shape is quadratic, we first measure it to determine its size
        // and then layout with full expansion to force the aspect ratio and
        // make sure it's really quadratic.
        if kind.is_quadratic() {
            let length = match quadratic_size(pod) {
                Some(length) => length,
                None => {
                    // Take as much as the child wants, but without overflowing.
                    crate::layout_frame(engine, child, locator.relayout(), styles, pod)?
                        .size()
                        .max_by_side()
                        .min(pod.size.min_by_side())
                }
            };

            pod = Region::new(Size::splat(length), Axes::splat(true));
        }

        // Layout the child.
        frame = crate::layout_frame(engine, child, locator, styles, pod)?;

        // Apply the inset.
        if has_inset {
            crate::pad::grow(&mut frame, &inset);
        }
    } else {
        // The default size that a shape takes on if it has no child and no
        // forced sizes.
        let default = Size::new(Abs::pt(45.0), Abs::pt(30.0)).min(region.size);

        let size = if kind.is_quadratic() {
            Size::splat(match quadratic_size(region) {
                Some(length) => length,
                None => default.min_by_side(),
            })
        } else {
            // For each dimension, pick the region size if forced, otherwise
            // use the default size (or the region size if the default
            // is too large for the region).
            region.expand.select(region.size, default)
        };

        frame = Frame::soft(size);
    }

    // Prepare stroke.
    let stroke = match stroke {
        Smart::Auto if fill.is_none() => Sides::splat(Some(FixedStroke::default())),
        Smart::Auto => Sides::splat(None),
        Smart::Custom(strokes) => {
            strokes.unwrap_or_default().map(|s| s.map(Stroke::unwrap_or_default))
        }
    };

    // Add fill and/or stroke.
    if fill.is_some() || stroke.iter().any(Option::is_some) {
        if kind.is_round() {
            let outset = outset.unwrap_or_default().relative_to(frame.size());
            let size = frame.size() + outset.sum_by_axis();
            let pos = Point::new(-outset.left, -outset.top);
            let shape = Shape {
                geometry: Geometry::Curve(Curve::ellipse(size)),
                fill,
                stroke: stroke.left,
                fill_rule: FillRule::default(),
            };
            frame.prepend(pos, FrameItem::Shape(shape, span));
        } else {
            fill_and_stroke(
                &mut frame,
                fill,
                &stroke,
                &outset.unwrap_or_default(),
                &radius.unwrap_or_default(),
                span,
            );
        }
    }

    Ok(frame)
}

/// Determines the forced size of a quadratic shape based on the region, if any.
///
/// The size is forced if at least one axis is expanded because `expand` is
/// `true` for axes whose size was manually specified by the user.
fn quadratic_size(region: Region) -> Option<Abs> {
    if region.expand.x && region.expand.y {
        // If both `width` and `height` are specified, we choose the
        // smaller one.
        Some(region.size.x.min(region.size.y))
    } else if region.expand.x {
        Some(region.size.x)
    } else if region.expand.y {
        Some(region.size.y)
    } else {
        None
    }
}

/// Creates a new rectangle as a curve.
pub fn clip_rect(
    size: Size,
    radius: &Corners<Rel<Abs>>,
    stroke: &Sides<Option<FixedStroke>>,
    outset: &Sides<Rel<Abs>>,
) -> Curve {
    let outset = outset.relative_to(size);
    let size = size + outset.sum_by_axis();

    let stroke_widths = stroke
        .as_ref()
        .map(|s| s.as_ref().map_or(Abs::zero(), |s| s.thickness / 2.0));

    let max_radius = (size.x.min(size.y)) / 2.0
        + stroke_widths.iter().cloned().min().unwrap_or(Abs::zero());

    let radius = radius.map(|side| side.relative_to(max_radius * 2.0).min(max_radius));
    let corners = corners_control_points(size, &radius, stroke, &stroke_widths);

    let mut curve = Curve::new();
    if corners.top_left.arc_inner() {
        curve.arc_move(
            corners.top_left.start_inner(),
            corners.top_left.center_inner(),
            corners.top_left.end_inner(),
        );
    } else {
        curve.move_(corners.top_left.center_inner());
    }
    for corner in [&corners.top_right, &corners.bottom_right, &corners.bottom_left] {
        if corner.arc_inner() {
            curve.arc_line(
                corner.start_inner(),
                corner.center_inner(),
                corner.end_inner(),
            )
        } else {
            curve.line(corner.center_inner());
        }
    }
    curve.close();
    curve.translate(Point::new(-outset.left, -outset.top));
    curve
}

/// Add a fill and stroke with optional radius and outset to the frame.
pub fn fill_and_stroke(
    frame: &mut Frame,
    fill: Option<Paint>,
    stroke: &Sides<Option<FixedStroke>>,
    outset: &Sides<Rel<Abs>>,
    radius: &Corners<Rel<Abs>>,
    span: Span,
) {
    let outset = outset.relative_to(frame.size());
    let size = frame.size() + outset.sum_by_axis();
    let pos = Point::new(-outset.left, -outset.top);
    frame.prepend_multiple(
        styled_rect(size, radius, fill, stroke)
            .into_iter()
            .map(|x| (pos, FrameItem::Shape(x, span))),
    );
}

/// Create a styled rectangle with shapes.
/// - use rect primitive for simple rectangles
/// - stroke sides if possible
/// - use fill for sides for best looks
pub fn styled_rect(
    size: Size,
    radius: &Corners<Rel<Abs>>,
    fill: Option<Paint>,
    stroke: &Sides<Option<FixedStroke>>,
) -> Vec<Shape> {
    if stroke.is_uniform() && radius.iter().cloned().all(Rel::is_zero) {
        simple_rect(size, fill, stroke.top.clone())
    } else {
        segmented_rect(size, radius, fill, stroke)
    }
}

/// Use rect primitive for the rectangle
fn simple_rect(
    size: Size,
    fill: Option<Paint>,
    stroke: Option<FixedStroke>,
) -> Vec<Shape> {
    vec![Shape {
        geometry: Geometry::Rect(size),
        fill,
        stroke,
        fill_rule: FillRule::default(),
    }]
}

fn corners_control_points(
    size: Size,
    radius: &Corners<Abs>,
    strokes: &Sides<Option<FixedStroke>>,
    stroke_widths: &Sides<Abs>,
) -> Corners<ControlPoints> {
    Corners {
        top_left: Corner::TopLeft,
        top_right: Corner::TopRight,
        bottom_right: Corner::BottomRight,
        bottom_left: Corner::BottomLeft,
    }
    .map(|corner| ControlPoints {
        radius: radius.get(corner),
        stroke_before: stroke_widths.get(corner.side_ccw()),
        stroke_after: stroke_widths.get(corner.side_cw()),
        corner,
        size,
        same: match (
            strokes.get_ref(corner.side_ccw()),
            strokes.get_ref(corner.side_cw()),
        ) {
            (Some(a), Some(b)) => a.paint == b.paint && a.dash == b.dash,
            (None, None) => true,
            _ => false,
        },
    })
}

/// Use stroke and fill for the rectangle
fn segmented_rect(
    size: Size,
    radius: &Corners<Rel<Abs>>,
    fill: Option<Paint>,
    strokes: &Sides<Option<FixedStroke>>,
) -> Vec<Shape> {
    let mut res = vec![];
    let stroke_widths = strokes
        .as_ref()
        .map(|s| s.as_ref().map_or(Abs::zero(), |s| s.thickness / 2.0));

    let max_radius = (size.x.min(size.y)) / 2.0
        + stroke_widths.iter().cloned().min().unwrap_or(Abs::zero());

    let radius = radius.map(|side| side.relative_to(max_radius * 2.0).min(max_radius));
    let corners = corners_control_points(size, &radius, strokes, &stroke_widths);

    // insert stroked sides below filled sides
    let mut stroke_insert = 0;

    // fill shape with inner curve
    if let Some(fill) = fill {
        let mut curve = Curve::new();
        let c = corners.get_ref(Corner::TopLeft);
        if c.arc() {
            curve.arc_move(c.start(), c.center(), c.end());
        } else {
            curve.move_(c.center());
        };

        for corner in [Corner::TopRight, Corner::BottomRight, Corner::BottomLeft] {
            let c = corners.get_ref(corner);
            if c.arc() {
                curve.arc_line(c.start(), c.center(), c.end());
            } else {
                curve.line(c.center());
            }
        }
        curve.close();
        res.push(Shape {
            geometry: Geometry::Curve(curve),
            fill: Some(fill),
            fill_rule: FillRule::default(),
            stroke: None,
        });
        stroke_insert += 1;
    }

    let current = corners.iter().find(|c| !c.same).map(|c| c.corner);
    if let Some(mut current) = current {
        // multiple segments
        // start at a corner with a change between sides and iterate clockwise all other corners
        let mut last = current;
        for _ in 0..4 {
            current = current.next_cw();
            if corners.get_ref(current).same {
                continue;
            }
            // create segment
            let start = last;
            let end = current;
            last = current;
            let Some(stroke) = strokes.get_ref(start.side_cw()) else { continue };
            let (shape, ontop) = segment(start, end, &corners, stroke);
            if ontop {
                res.push(shape);
            } else {
                res.insert(stroke_insert, shape);
                stroke_insert += 1;
            }
        }
    } else if let Some(stroke) = &strokes.top {
        // single segment
        let (shape, _) = segment(Corner::TopLeft, Corner::TopLeft, &corners, stroke);
        res.push(shape);
    }
    res
}

fn curve_segment(
    start: Corner,
    end: Corner,
    corners: &Corners<ControlPoints>,
    curve: &mut Curve,
) {
    // create start corner
    let c = corners.get_ref(start);
    if start == end || !c.arc() {
        curve.move_(c.end());
    } else {
        curve.arc_move(c.mid(), c.center(), c.end());
    }

    // create corners between start and end
    let mut current = start.next_cw();
    while current != end {
        let c = corners.get_ref(current);
        if c.arc() {
            curve.arc_line(c.start(), c.center(), c.end());
        } else {
            curve.line(c.end());
        }
        current = current.next_cw();
    }

    // create end corner
    let c = corners.get_ref(end);
    if !c.arc() {
        curve.line(c.start());
    } else if start == end {
        curve.arc_line(c.start(), c.center(), c.end());
    } else {
        curve.arc_line(c.start(), c.center(), c.mid());
    }
}

/// Returns the shape for the segment and whether the shape should be drawn on top.
fn segment(
    start: Corner,
    end: Corner,
    corners: &Corners<ControlPoints>,
    stroke: &FixedStroke,
) -> (Shape, bool) {
    fn fill_corner(corner: &ControlPoints) -> bool {
        corner.stroke_before != corner.stroke_after
            || corner.radius() < corner.stroke_before
    }

    fn fill_corners(
        start: Corner,
        end: Corner,
        corners: &Corners<ControlPoints>,
    ) -> bool {
        if fill_corner(corners.get_ref(start)) {
            return true;
        }
        if fill_corner(corners.get_ref(end)) {
            return true;
        }
        let mut current = start.next_cw();
        while current != end {
            if fill_corner(corners.get_ref(current)) {
                return true;
            }
            current = current.next_cw();
        }
        false
    }

    let solid = stroke.dash.as_ref().map(|dash| dash.array.is_empty()).unwrap_or(true);

    let use_fill = solid && fill_corners(start, end, corners);
    let shape = if use_fill {
        fill_segment(start, end, corners, stroke)
    } else {
        stroke_segment(start, end, corners, stroke.clone())
    };

    (shape, use_fill)
}

/// Stroke the sides from `start` to `end` clockwise.
fn stroke_segment(
    start: Corner,
    end: Corner,
    corners: &Corners<ControlPoints>,
    stroke: FixedStroke,
) -> Shape {
    // Create start corner.
    let mut curve = Curve::new();
    curve_segment(start, end, corners, &mut curve);

    Shape {
        geometry: Geometry::Curve(curve),
        stroke: Some(stroke),
        fill: None,
        fill_rule: FillRule::default(),
    }
}

/// Fill the sides from `start` to `end` clockwise.
fn fill_segment(
    start: Corner,
    end: Corner,
    corners: &Corners<ControlPoints>,
    stroke: &FixedStroke,
) -> Shape {
    let mut curve = Curve::new();

    // create the start corner
    // begin on the inside and finish on the outside
    // no corner if start and end are equal
    // half corner if different
    if start == end {
        let c = corners.get_ref(start);
        curve.move_(c.end_inner());
        curve.line(c.end_outer());
    } else {
        let c = corners.get_ref(start);

        if c.arc_inner() {
            curve.arc_move(c.end_inner(), c.center_inner(), c.mid_inner());
        } else {
            curve.move_(c.end_inner());
        }

        if c.arc_outer() {
            curve.arc_line(c.mid_outer(), c.center_outer(), c.end_outer());
        } else {
            curve.line(c.outer());
            curve.line(c.end_outer());
        }
    }

    // create the clockwise outside curve for the corners between start and end
    let mut current = start.next_cw();
    while current != end {
        let c = corners.get_ref(current);
        if c.arc_outer() {
            curve.arc_line(c.start_outer(), c.center_outer(), c.end_outer());
        } else {
            curve.line(c.outer());
        }
        current = current.next_cw();
    }

    // create the end corner
    // begin on the outside and finish on the inside
    // full corner if start and end are equal
    // half corner if different
    if start == end {
        let c = corners.get_ref(end);
        if c.arc_outer() {
            curve.arc_line(c.start_outer(), c.center_outer(), c.end_outer());
        } else {
            curve.line(c.outer());
            curve.line(c.end_outer());
        }
        if c.arc_inner() {
            curve.arc_line(c.end_inner(), c.center_inner(), c.start_inner());
        } else {
            curve.line(c.center_inner());
        }
    } else {
        let c = corners.get_ref(end);
        if c.arc_outer() {
            curve.arc_line(c.start_outer(), c.center_outer(), c.mid_outer());
        } else {
            curve.line(c.outer());
        }
        if c.arc_inner() {
            curve.arc_line(c.mid_inner(), c.center_inner(), c.start_inner());
        } else {
            curve.line(c.center_inner());
        }
    }

    // create the counterclockwise inside curve for the corners between start and end
    let mut current = end.next_ccw();
    while current != start {
        let c = corners.get_ref(current);
        if c.arc_inner() {
            curve.arc_line(c.end_inner(), c.center_inner(), c.start_inner());
        } else {
            curve.line(c.center_inner());
        }
        current = current.next_ccw();
    }

    curve.close();

    Shape {
        geometry: Geometry::Curve(curve),
        stroke: None,
        fill: Some(stroke.paint.clone()),
        fill_rule: FillRule::default(),
    }
}

/// Helper to calculate different control points for the corners.
/// Clockwise orientation from start to end.
/// ```text
/// O-------------------EO  ---   - Z: Zero/Origin ({x: 0, y: 0} for top left corner)
/// |\   ___----'''     |    |    - O: Outer: intersection between the straight outer lines
/// | \ /               |    |    - S_: start
/// |  MO               |    |    - M_: midpoint
/// | /Z\  __-----------E    |    - E_: end
/// |/   \M             |    ro   - r_: radius
/// |    /\             |    |    - middle of the stroke
/// |   /  \            |    |      - arc from S through M to E with center C and radius r
/// |  |    MI--EI-------    |    - outer curve
/// |  |  /  \               |      - arc from SO through MO to EO with center CO and radius ro
/// SO | |    \         CO  ---   - inner curve
/// |  | |     \                    - arc from SI through MI to EI with center CI and radius ri
/// |--S-SI-----CI      C
///      |--ri--|
///    |-------r--------|
/// ```
struct ControlPoints {
    radius: Abs,
    stroke_after: Abs,
    stroke_before: Abs,
    corner: Corner,
    size: Size,
    same: bool,
}

impl ControlPoints {
    /// Move and rotate the point from top-left to the required corner.
    fn rotate(&self, point: Point) -> Point {
        match self.corner {
            Corner::TopLeft => point,
            Corner::TopRight => Point { x: self.size.x - point.y, y: point.x },
            Corner::BottomRight => {
                Point { x: self.size.x - point.x, y: self.size.y - point.y }
            }
            Corner::BottomLeft => Point { x: point.y, y: self.size.y - point.x },
        }
    }

    /// Outside intersection of the sides.
    pub fn outer(&self) -> Point {
        self.rotate(Point { x: -self.stroke_before, y: -self.stroke_after })
    }

    /// Center for the outer arc.
    pub fn center_outer(&self) -> Point {
        let r = self.radius_outer();
        self.rotate(Point {
            x: r - self.stroke_before,
            y: r - self.stroke_after,
        })
    }

    /// Center for the middle arc.
    pub fn center(&self) -> Point {
        let r = self.radius();
        self.rotate(Point { x: r, y: r })
    }

    /// Center for the inner arc.
    pub fn center_inner(&self) -> Point {
        let r = self.radius_inner();

        self.rotate(Point {
            x: self.stroke_before + r,
            y: self.stroke_after + r,
        })
    }

    /// Radius of the outer arc.
    pub fn radius_outer(&self) -> Abs {
        self.radius
    }

    /// Radius of the middle arc.
    pub fn radius(&self) -> Abs {
        (self.radius - self.stroke_before.min(self.stroke_after)).max(Abs::zero())
    }

    /// Radius of the inner arc.
    pub fn radius_inner(&self) -> Abs {
        (self.radius - 2.0 * self.stroke_before.max(self.stroke_after)).max(Abs::zero())
    }

    /// Middle of the corner on the outside of the stroke.
    pub fn mid_outer(&self) -> Point {
        let c_i = self.center_inner();
        let c_o = self.center_outer();
        let o = self.outer();
        let r = self.radius_outer();

        // https://math.stackexchange.com/a/311956
        // intersection between the line from inner center to outside and the outer arc
        let a = (o.x - c_i.x).to_raw().powi(2) + (o.y - c_i.y).to_raw().powi(2);
        let b = 2.0 * (o.x - c_i.x).to_raw() * (c_i.x - c_o.x).to_raw()
            + 2.0 * (o.y - c_i.y).to_raw() * (c_i.y - c_o.y).to_raw();
        let c = (c_i.x - c_o.x).to_raw().powi(2) + (c_i.y - c_o.y).to_raw().powi(2)
            - r.to_raw().powi(2);
        let t = (-b + (b * b - 4.0 * a * c).max(0.0).sqrt()) / (2.0 * a);
        c_i + t * (o - c_i)
    }

    /// Middle of the corner in the middle of the stroke.
    pub fn mid(&self) -> Point {
        let center = self.center_outer();
        let outer = self.outer();
        let diff = outer - center;
        center + diff / diff.hypot().to_raw() * self.radius().to_raw()
    }

    /// Middle of the corner on the inside of the stroke.
    pub fn mid_inner(&self) -> Point {
        let center = self.center_inner();
        let outer = self.outer();
        let diff = outer - center;
        center + diff / diff.hypot().to_raw() * self.radius_inner().to_raw()
    }

    /// If an outer arc is required.
    pub fn arc_outer(&self) -> bool {
        self.radius_outer() > Abs::zero()
    }

    pub fn arc(&self) -> bool {
        self.radius() > Abs::zero()
    }

    /// If an inner arc is required.
    pub fn arc_inner(&self) -> bool {
        self.radius_inner() > Abs::zero()
    }

    /// Start of the corner on the outside of the stroke.
    pub fn start_outer(&self) -> Point {
        self.rotate(Point {
            x: -self.stroke_before,
            y: self.radius_outer() - self.stroke_after,
        })
    }

    /// Start of the corner in the center of the stroke.
    pub fn start(&self) -> Point {
        self.rotate(Point::with_y(self.radius()))
    }

    /// Start of the corner on the inside of the stroke.
    pub fn start_inner(&self) -> Point {
        self.rotate(Point {
            x: self.stroke_before,
            y: self.stroke_after + self.radius_inner(),
        })
    }

    /// End of the corner on the outside of the stroke.
    pub fn end_outer(&self) -> Point {
        self.rotate(Point {
            x: self.radius_outer() - self.stroke_before,
            y: -self.stroke_after,
        })
    }

    /// End of the corner in the center of the stroke.
    pub fn end(&self) -> Point {
        self.rotate(Point::with_x(self.radius()))
    }

    /// End of the corner on the inside of the stroke.
    pub fn end_inner(&self) -> Point {
        self.rotate(Point {
            x: self.stroke_before + self.radius_inner(),
            y: self.stroke_after,
        })
    }
}

/// Helper to draw arcs with bezier curves.
trait CurveExt {
    fn arc(&mut self, start: Point, center: Point, end: Point);
    fn arc_move(&mut self, start: Point, center: Point, end: Point);
    fn arc_line(&mut self, start: Point, center: Point, end: Point);
}

impl CurveExt for Curve {
    fn arc(&mut self, start: Point, center: Point, end: Point) {
        let arc = bezier_arc_control(start, center, end);
        self.cubic(arc[0], arc[1], end);
    }

    fn arc_move(&mut self, start: Point, center: Point, end: Point) {
        self.move_(start);
        self.arc(start, center, end);
    }

    fn arc_line(&mut self, start: Point, center: Point, end: Point) {
        self.line(start);
        self.arc(start, center, end);
    }
}

/// Get the control points for a bezier curve that approximates a circular arc for
/// a start point, an end point and a center of the circle whose arc connects
/// the two.
fn bezier_arc_control(start: Point, center: Point, end: Point) -> [Point; 2] {
    // https://stackoverflow.com/a/44829356/1567835
    let a = start - center;
    let b = end - center;

    let q1 = a.x.to_raw() * a.x.to_raw() + a.y.to_raw() * a.y.to_raw();
    let q2 = q1 + a.x.to_raw() * b.x.to_raw() + a.y.to_raw() * b.y.to_raw();
    let k2 = (4.0 / 3.0) * ((2.0 * q1 * q2).sqrt() - q2)
        / (a.x.to_raw() * b.y.to_raw() - a.y.to_raw() * b.x.to_raw());

    let control_1 = Point::new(center.x + a.x - k2 * a.y, center.y + a.y + k2 * a.x);
    let control_2 = Point::new(center.x + b.x + k2 * b.y, center.y + b.y - k2 * b.x);

    [control_1, control_2]
}