typst_layout/stack.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
use typst_library::diag::{bail, SourceResult};
use typst_library::engine::Engine;
use typst_library::foundations::{Content, Packed, Resolve, StyleChain, StyledElem};
use typst_library::introspection::{Locator, SplitLocator};
use typst_library::layout::{
Abs, AlignElem, Axes, Axis, Dir, FixedAlignment, Fr, Fragment, Frame, HElem, Point,
Regions, Size, Spacing, StackChild, StackElem, VElem,
};
use typst_syntax::Span;
use typst_utils::{Get, Numeric};
/// Layout the stack.
#[typst_macros::time(span = elem.span())]
pub fn layout_stack(
elem: &Packed<StackElem>,
engine: &mut Engine,
locator: Locator,
styles: StyleChain,
regions: Regions,
) -> SourceResult<Fragment> {
let mut layouter =
StackLayouter::new(elem.span(), elem.dir(styles), locator, styles, regions);
let axis = layouter.dir.axis();
// Spacing to insert before the next block.
let spacing = elem.spacing(styles);
let mut deferred = None;
for child in &elem.children {
match child {
StackChild::Spacing(kind) => {
layouter.layout_spacing(*kind);
deferred = None;
}
StackChild::Block(block) => {
// Transparently handle `h`.
if let (Axis::X, Some(h)) = (axis, block.to_packed::<HElem>()) {
layouter.layout_spacing(h.amount);
deferred = None;
continue;
}
// Transparently handle `v`.
if let (Axis::Y, Some(v)) = (axis, block.to_packed::<VElem>()) {
layouter.layout_spacing(v.amount);
deferred = None;
continue;
}
if let Some(kind) = deferred {
layouter.layout_spacing(kind);
}
layouter.layout_block(engine, block, styles)?;
deferred = spacing;
}
}
}
layouter.finish()
}
/// Performs stack layout.
struct StackLayouter<'a> {
/// The span to raise errors at during layout.
span: Span,
/// The stacking direction.
dir: Dir,
/// The axis of the stacking direction.
axis: Axis,
/// Provides unique locations to the stack's children.
locator: SplitLocator<'a>,
/// The inherited styles.
styles: StyleChain<'a>,
/// The regions to layout children into.
regions: Regions<'a>,
/// Whether the stack itself should expand to fill the region.
expand: Axes<bool>,
/// The initial size of the current region before we started subtracting.
initial: Size,
/// The generic size used by the frames for the current region.
used: GenericSize<Abs>,
/// The sum of fractions in the current region.
fr: Fr,
/// Already layouted items whose exact positions are not yet known due to
/// fractional spacing.
items: Vec<StackItem>,
/// Finished frames for previous regions.
finished: Vec<Frame>,
}
/// A prepared item in a stack layout.
enum StackItem {
/// Absolute spacing between other items.
Absolute(Abs),
/// Fractional spacing between other items.
Fractional(Fr),
/// A frame for a layouted block.
Frame(Frame, Axes<FixedAlignment>),
}
impl<'a> StackLayouter<'a> {
/// Create a new stack layouter.
fn new(
span: Span,
dir: Dir,
locator: Locator<'a>,
styles: StyleChain<'a>,
mut regions: Regions<'a>,
) -> Self {
let axis = dir.axis();
let expand = regions.expand;
// Disable expansion along the block axis for children.
regions.expand.set(axis, false);
Self {
span,
dir,
axis,
locator: locator.split(),
styles,
regions,
expand,
initial: regions.size,
used: GenericSize::zero(),
fr: Fr::zero(),
items: vec![],
finished: vec![],
}
}
/// Add spacing along the spacing direction.
fn layout_spacing(&mut self, spacing: Spacing) {
match spacing {
Spacing::Rel(v) => {
// Resolve the spacing and limit it to the remaining space.
let resolved = v
.resolve(self.styles)
.relative_to(self.regions.base().get(self.axis));
let remaining = self.regions.size.get_mut(self.axis);
let limited = resolved.min(*remaining);
if self.dir.axis() == Axis::Y {
*remaining -= limited;
}
self.used.main += limited;
self.items.push(StackItem::Absolute(resolved));
}
Spacing::Fr(v) => {
self.fr += v;
self.items.push(StackItem::Fractional(v));
}
}
}
/// Layout an arbitrary block.
fn layout_block(
&mut self,
engine: &mut Engine,
block: &Content,
styles: StyleChain,
) -> SourceResult<()> {
if self.regions.is_full() {
self.finish_region()?;
}
// Block-axis alignment of the `AlignElem` is respected by stacks.
let align = if let Some(align) = block.to_packed::<AlignElem>() {
align.alignment(styles)
} else if let Some(styled) = block.to_packed::<StyledElem>() {
AlignElem::alignment_in(styles.chain(&styled.styles))
} else {
AlignElem::alignment_in(styles)
}
.resolve(styles);
let fragment = crate::layout_fragment(
engine,
block,
self.locator.next(&block.span()),
styles,
self.regions,
)?;
let len = fragment.len();
for (i, frame) in fragment.into_iter().enumerate() {
// Grow our size, shrink the region and save the frame for later.
let specific_size = frame.size();
if self.dir.axis() == Axis::Y {
self.regions.size.y -= specific_size.y;
}
let generic_size = match self.axis {
Axis::X => GenericSize::new(specific_size.y, specific_size.x),
Axis::Y => GenericSize::new(specific_size.x, specific_size.y),
};
self.used.main += generic_size.main;
self.used.cross.set_max(generic_size.cross);
self.items.push(StackItem::Frame(frame, align));
if i + 1 < len {
self.finish_region()?;
}
}
Ok(())
}
/// Advance to the next region.
fn finish_region(&mut self) -> SourceResult<()> {
// Determine the size of the stack in this region depending on whether
// the region expands.
let mut size = self
.expand
.select(self.initial, self.used.into_axes(self.axis))
.min(self.initial);
// Expand fully if there are fr spacings.
let full = self.initial.get(self.axis);
let remaining = full - self.used.main;
if self.fr.get() > 0.0 && full.is_finite() {
self.used.main = full;
size.set(self.axis, full);
}
if !size.is_finite() {
bail!(self.span, "stack spacing is infinite");
}
let mut output = Frame::hard(size);
let mut cursor = Abs::zero();
let mut ruler: FixedAlignment = self.dir.start().into();
// Place all frames.
for item in self.items.drain(..) {
match item {
StackItem::Absolute(v) => cursor += v,
StackItem::Fractional(v) => cursor += v.share(self.fr, remaining),
StackItem::Frame(frame, align) => {
if self.dir.is_positive() {
ruler = ruler.max(align.get(self.axis));
} else {
ruler = ruler.min(align.get(self.axis));
}
// Align along the main axis.
let parent = size.get(self.axis);
let child = frame.size().get(self.axis);
let main = ruler.position(parent - self.used.main)
+ if self.dir.is_positive() {
cursor
} else {
self.used.main - child - cursor
};
// Align along the cross axis.
let other = self.axis.other();
let cross = align
.get(other)
.position(size.get(other) - frame.size().get(other));
let pos = GenericSize::new(cross, main).to_point(self.axis);
cursor += child;
output.push_frame(pos, frame);
}
}
}
// Advance to the next region.
self.regions.next();
self.initial = self.regions.size;
self.used = GenericSize::zero();
self.fr = Fr::zero();
self.finished.push(output);
Ok(())
}
/// Finish layouting and return the resulting frames.
fn finish(mut self) -> SourceResult<Fragment> {
self.finish_region()?;
Ok(Fragment::frames(self.finished))
}
}
/// A generic size with main and cross axes. The axes are generic, meaning the
/// main axis could correspond to either the X or the Y axis.
#[derive(Default, Copy, Clone, Eq, PartialEq, Hash)]
struct GenericSize<T> {
/// The cross component, along the axis perpendicular to the main.
pub cross: T,
/// The main component.
pub main: T,
}
impl<T> GenericSize<T> {
/// Create a new instance from the two components.
const fn new(cross: T, main: T) -> Self {
Self { cross, main }
}
/// Convert to the specific representation, given the current main axis.
fn into_axes(self, main: Axis) -> Axes<T> {
match main {
Axis::X => Axes::new(self.main, self.cross),
Axis::Y => Axes::new(self.cross, self.main),
}
}
}
impl GenericSize<Abs> {
/// The zero value.
fn zero() -> Self {
Self { cross: Abs::zero(), main: Abs::zero() }
}
/// Convert to a point.
fn to_point(self, main: Axis) -> Point {
self.into_axes(main).to_point()
}
}