1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
//! Type-level functions.
//! 
//! Type-level functions come in two flavors: 
//! [injective](#injective), and [non-injective](#non-injective)
//! 
//! 
//! # Injective
//! 
//! An injective function is any function `f` for which `a != b` implies `f(a) != f(b)`.
//! <br>(For both injective and non-injective functions, `f(a) != f(b)` implies `a != b`)
//! 
//! The [`InjTypeFn`] trait encodes injective type-level functions,
//! requiring the type to implement both [`TypeFn`] and [`RevTypeFn`].
//! 
//! 
//! ### Example: injective function
//!
//! ```rust
//! # use typewit::CallInjFn;
//! #
//! typewit::inj_type_fn!{
//!     struct Upcast;
//!     
//!     impl u8 => u16;
//!     impl u16 => u32;
//!     impl u32 => u64;
//!     impl u64 => u128;
//! }
//! let _: CallInjFn<Upcast, u8> = 3u16;
//! let _: CallInjFn<Upcast, u16> = 5u32;
//! ```
//! 
//! Because `Upcast` is injective, 
//! it is possible to query the argument from the returned value:
//! 
//! ```rust
//! # use typewit::UncallFn;
//! #
//! let _: UncallFn<Upcast, u16> = 3u8;
//! let _: UncallFn<Upcast, u128> = 5u64;
//! # 
//! # typewit::inj_type_fn!{
//! #     struct Upcast;
//! #     
//! #     impl u8 => u16;
//! #     impl u16 => u32;
//! #     impl u32 => u64;
//! #     impl u64 => u128;
//! # }
//! ```
//! 
//! # Non-injective
//! 
//! The [`TypeFn`] trait allows implementors to be non-injective.
//!
//! ### Example: non-injective function
//!
//! ```rust
//! typewit::type_fn!{
//!     struct Bar;
//!     
//!     impl<T> Vec<T> => T;
//!     impl<T> Box<T> => T;
//! }
//! ```
//! `Bar` is *non*-injective because it maps both `Vec<T>` and `Box<T>` to `T`.
//! 
//! 
//! [`TypeFn`]: crate::type_fn::TypeFn
//! [`CallFn`]: crate::type_fn::CallFn
//! 

use core::marker::PhantomData;

mod injective;

pub use self::injective::*;

pub(crate) use self::injective::simple_inj_type_fn;

#[doc(no_inline)]
pub use crate::inj_type_fn;

#[doc(no_inline)]
pub use crate::type_fn;


/// A function that operates purely on the level of types.
/// 
/// These can be used in `typewit` to 
/// [map the type arguments of `TypeEq`](crate::TypeEq::project).
/// 
/// Type-level functions can also be declared with the 
/// [`type_fn`](macro@crate::type_fn) macro.
/// 
/// # Properties
/// 
/// These are properties about `TypeFn` implementors that users can rely on.
/// 
/// For any given `F: TypeFn<A> + TypeFn<B>` these hold:
/// 
/// 1. If `A == B`, then `CallFn<F, A> == CallFn<F, B>`.
/// 2. If `CallFn<F, A> != CallFn<F, B>`, then `A != B`. 
/// 
/// # Examples
/// 
/// ### Manual Implementation
/// 
/// ```rust
/// use typewit::{TypeFn, CallFn};
/// 
/// let string: CallFn<AddOutput<String>, &str> = "foo".to_string() +  ", bar";
/// let _: String = string;
/// assert_eq!(string, "foo, bar");
/// 
/// 
/// struct AddOutput<Lhs>(core::marker::PhantomData<Lhs>);
/// 
/// // This part is optional,
/// // only necessary to pass the function as a value, not just as a type.
/// impl<Lhs> AddOutput<Lhs> {
///     const NEW: Self = Self(core::marker::PhantomData);
/// }
/// 
/// impl<Lhs, Rhs> TypeFn<Rhs> for AddOutput<Lhs>
/// where
///     Lhs: core::ops::Add<Rhs>
/// {
///     type Output = Lhs::Output;
/// }
/// ```
/// 
/// ### Macro-based Implementation
/// 
/// This example uses the [`type_fn`](macro@crate::type_fn) macro
/// to declare the type-level function,
/// and is otherwise equivalent to the manual one.
/// 
/// ```rust
/// use typewit::CallFn;
/// 
/// let string: CallFn<AddOutput<String>, &str> = "foo".to_string() +  ", bar";
/// let _: String = string;
/// assert_eq!(string, "foo, bar");
/// 
/// typewit::type_fn! {
///     struct AddOutput<Lhs>;
/// 
///     impl<Rhs> Rhs => Lhs::Output
///     where Lhs: core::ops::Add<Rhs>
/// }
/// ```
/// 
pub trait TypeFn<T: ?Sized> {
    /// The return value of the function
    type Output: ?Sized;

    /// Helper constant for adding asserts in the `TypeFn` impl;
    const TYPE_FN_ASSERTS: () = ();
}

/// Calls the `F` [type-level function](TypeFn) with `T` as its argument.
/// 
/// For `F:`[`InjTypeFn<T>`](crate::InjTypeFn), it's better to 
/// use [`CallInjFn`] instead of this type alias.
/// 
/// 
/// # Example
/// 
/// ```rust
/// use typewit::CallFn;
/// use core::ops::Mul;
/// 
/// assert_eq!(mul(3u8, &5u8), 15u8);
/// 
/// fn mul<L, R>(l: L, r: R) -> CallFn<MulOutput<L>, R> 
/// where
///     L: core::ops::Mul<R>
/// {
///     l * r
/// }
/// 
/// // Declares `struct MulOutput<Lhs>`,
/// // a type-level function from `Rhs` to the return type of `Lhs * Rhs`.
/// typewit::type_fn! {
///     struct MulOutput<Lhs>;
///
///     impl<Rhs> Rhs => <Lhs as Mul<Rhs>>::Output
///     where Lhs: core::ops::Mul<Rhs>
/// }
/// ```
/// 
pub type CallFn<F, T> = <F as TypeFn<T>>::Output;

///////////////////////////////////////////////////////

/// Type-level function from `T` to `&'a T`
pub struct GRef<'a>(PhantomData<fn() -> &'a ()>);

impl<'a> GRef<'a> {
    /// Make a value of this type-level function
    pub const NEW: Self = Self(PhantomData);
}

simple_inj_type_fn!{
    impl['a, T: 'a + ?Sized] (T => &'a T) for GRef<'a>
}

////////////////

/// Type-level function from `T` to `&'a mut T`
pub struct GRefMut<'a>(PhantomData<fn() -> &'a mut ()>);

impl<'a> GRefMut<'a> {
    /// Make a value of this type-level function
    pub const NEW: Self = Self(PhantomData);
}

simple_inj_type_fn!{
    impl['a, T: 'a + ?Sized] (T => &'a mut T) for GRefMut<'a>
}

////////////////

/// Type-level function from `T` to `Box<T>`
#[cfg(feature = "alloc")]
#[cfg_attr(feature = "docsrs", doc(cfg(feature = "alloc")))]
pub struct GBox;

#[cfg(feature = "alloc")]
simple_inj_type_fn!{
    impl[T: ?Sized] (T => alloc::boxed::Box<T>) for GBox
}

////////////////

/// Type-level identity function
pub struct FnIdentity;

simple_inj_type_fn!{
    impl[T: ?Sized] (T => T) for FnIdentity
}

////////////////

/// Type-level function which implements `TypeFn` by delegating to `F` 
/// 
/// This is mostly a workaround to write `F: TypeFn<T>` bounds in Rust 1.57.0
/// (trait bounds in `const fn`s were stabilized in Rust 1.61.0).
///
/// Because `Foo<F>: Trait`-style bounds unintentionally work in 1.57.0,
/// this crate uses `Invoke<F>: TypeFn<T>` 
/// when the `"rust_1_61"` feature is disabled,
/// and `F: TypeFn<T>` when it is enabled.
/// 
pub struct Invoke<F>(PhantomData<fn() -> F>);

impl<F> Copy for Invoke<F> {}

impl<F> Clone for Invoke<F> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<F> Invoke<F> {
    /// Constructs an `Invoke`
    pub const NEW: Self = Self(PhantomData);
}


impl<F, T: ?Sized> TypeFn<T> for Invoke<F> 
where
    F: TypeFn<T>
{
    type Output = CallFn<F, T>;
}

impl<F, R: ?Sized> RevTypeFn<R> for Invoke<F> 
where
    F: RevTypeFn<R>,
{
    type Arg = UncallFn<F, R>;
}


////////////////////////////////////////////////////////////////////////////////

impl<F, T: ?Sized> TypeFn<T> for PhantomData<F> 
where
    F: TypeFn<T>
{
    type Output = CallFn<F, T>;
}

impl<F, R: ?Sized> RevTypeFn<R> for PhantomData<F> 
where
    F: RevTypeFn<R>,
{
    type Arg = UncallFn<F, R>;
}



////////////////////////////////////////////////////////////////////////////////


mod uses_const_marker {
    use crate::const_marker::Usize;

    /// TypeFn from `(T, Usize<N>)` to `[T; N]`
    pub(crate) struct PairToArrayFn;

    super::simple_inj_type_fn!{
        impl[T, const N: usize] ((T, Usize<N>) => [T; N]) for PairToArrayFn
    }
} 

pub(crate) use uses_const_marker::*;



// This type alias makes it so that docs for newer Rust versions don't
// show `Invoke<F>`, keeping the method bounds the same as in 1.0.0.
#[cfg(not(feature = "rust_1_61"))]
pub(crate) type InvokeAlias<F> = Invoke<F>;

#[cfg(feature = "rust_1_61")]
pub(crate) type InvokeAlias<F> = F;