type_sitter_lib/node/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
use crate::raw;
#[cfg(feature = "yak-sitter")]
use crate::PointRange;
use crate::{InputEdit, Point, Range};
pub use cursor::*;
pub use incorrect_kind::*;
pub use parser::*;
use std::fmt::Debug;
use std::hash::Hash;
#[cfg(not(feature = "yak-sitter"))]
use std::str::Utf8Error;
pub use tree::*;
pub use unwrap_and_flatten_multi::*;
pub use wrappers::*;
/// Extra, missing, untyped nodes
mod wrappers;
/// Errors when a node has the wrong kind so it can't be wrapped
mod incorrect_kind;
/// Unwrapping multiple `Try`-types at once
mod unwrap_and_flatten_multi;
mod tree;
mod cursor;
mod parser;
/// Typed node wrapper.
///
/// This implements `TryFrom<tree_sitter::Node<'tree>>`, which will succeed iff the node is of the correct type.
/// That is how you convert untyped nodes into types nodes. If you're absolutely sure the node is
/// correct, you may also use [Node::from_raw_unchecked], though it's honestly probably not
/// worth the possible performance gain.
pub trait Node<'tree>: Debug + Clone + Copy + PartialEq + Eq + Hash {
/// The same type, but with a different lifetime.
type WithLifetime<'a>: Node<'a>;
/// Kind of nodes this wraps.
///
/// For nodes that map directly to tree-sitter nodes, this is the tree-sitter node's name. For
/// nodes like unions, [`UntypedNode`], or [`NodeResult`]s, which don't have a simple kind
/// (especially static), this is `{...}`.
const KIND: &'static str;
/// Check that the tree-sitter node is the correct kind, and if it is, wrap.
///
/// Returns `Err` if the node is not of the correct kind.
fn try_from_raw(node: raw::Node<'tree>) -> NodeResult<'tree, Self>;
/// Assume that tree-sitter node is the correct kind and wrap.
///
/// # Safety
/// The node must be of the correct kind.
#[inline]
unsafe fn from_raw_unchecked(node: raw::Node<'tree>) -> Self {
Self::try_from_raw(node).expect("from_raw_unchecked failed")
}
/// The wrapped tree-sitter node.
///
/// Note that most methods you should call on this struct directly.
fn raw(&self) -> &raw::Node<'tree>;
/// The wrapped tree-sitter node (mutable reference, rarely needed).
///
/// Note that most methods you should call on this struct directly.
fn raw_mut(&mut self) -> &mut raw::Node<'tree>;
/// Destruct into the wrapped tree-sitter node.
///
/// Note that most methods you should call on this struct directly.
fn into_raw(self) -> raw::Node<'tree>;
/// Upcast into an untyped node.
///
/// The inverse is [`UntypedNode::downcast`].
#[inline]
fn upcast(self) -> UntypedNode<'tree> {
UntypedNode::new(self.into_raw())
}
// region [Node] delegate
/// See [tree-sitter's `Node::text`](raw::Node::text)
#[cfg(feature = "yak-sitter")]
fn text(&self) -> &'tree str {
self.raw().text()
}
/// See [tree-sitter's `Node::utf8_text`](raw::Node::utf8_text)
#[inline]
#[cfg(not(feature = "yak-sitter"))]
fn utf8_text<'a>(&self, source: &'a [u8]) -> Result<&'a str, Utf8Error> {
self.raw().utf8_text(source)
}
/// See [tree-sitter's `Node::utf16_text`](raw::Node::utf16_text)
#[inline]
#[cfg(not(feature = "yak-sitter"))]
fn utf16_text<'a>(&self, source: &'a [u16]) -> &'a [u16] {
self.raw().utf16_text(source)
}
/// Returns any [extra](raw::Node::is_extra) nodes before this one, e.g., comments.
///
/// Nodes are iterated first to last (by source location).
#[inline]
fn prefixes(&self) -> impl Iterator<Item=UntypedNode<'tree>> {
Prefixes::new(*self.raw())
}
/// Returns any [extra](raw::Node::is_extra) nodes after this one, e.g., comments.
///
/// Nodes are iterated first to last (by source location).
#[inline]
fn suffixes(&self) -> impl Iterator<Item=UntypedNode<'tree>> {
Suffixes::new(*self.raw())
}
/// Get a cursor for this node
#[inline]
fn walk(&self) -> TreeCursor<'tree> {
TreeCursor(self.raw().walk())
}
/// Get the node's immediate parent
#[inline]
fn parent(&self) -> Option<UntypedNode<'tree>> {
self.raw().parent().map(UntypedNode::from)
}
/// Get the node's immediate named next sibling
#[inline]
fn next_named_sibling(&self) -> Option<UntypedNode<'tree>> {
self.raw().next_named_sibling().map(UntypedNode::from)
}
/// Get the node's immediate named previous sibling
#[inline]
fn prev_named_sibling(&self) -> Option<UntypedNode<'tree>> {
self.raw().prev_named_sibling().map(UntypedNode::from)
}
/// Get the number of named children
#[inline]
fn named_child_count(&self) -> usize {
self.raw().named_child_count()
}
/// Print the node as an s-expression
#[inline]
fn to_sexp(&self) -> String {
self.raw().to_sexp()
}
/// Get this node's tree-sitter name. See [tree-sitter's `Node::kind`](raw::Node::kind)
#[inline]
fn kind(&self) -> &'static str {
self.raw().kind()
}
/// Check if this node is *named*. See [tree-sitter's `Node::is_named`](raw::Node::is_named)
#[inline]
fn is_named(&self) -> bool {
self.raw().is_named()
}
/// Check if this node has been edited
#[inline]
fn has_changes(&self) -> bool {
self.raw().has_changes()
}
/// Check if this node represents a syntax error or contains any syntax errors anywhere within
/// it
#[inline]
fn has_error(&self) -> bool {
self.raw().has_error()
}
/// Get the byte offset where this node starts
#[inline]
fn start_byte(&self) -> usize {
self.raw().start_byte()
}
/// Get the byte offset where this node ends
#[inline]
fn end_byte(&self) -> usize {
self.raw().end_byte()
}
/// Get the row and column where this node starts
#[inline]
fn start_position(&self) -> Point {
self.raw().start_position()
}
/// Get the row and column where this node ends
#[inline]
fn end_position(&self) -> Point {
self.raw().end_position()
}
/// Get the byte range and row and column range where this node is located
#[inline]
fn range(&self) -> Range {
self.raw().range()
}
/// Get the byte range where this node is located
#[inline]
fn byte_range(&self) -> std::ops::Range<usize> {
self.raw().byte_range()
}
/// Get the row and column range where this node is located
#[inline]
#[cfg(feature = "yak-sitter")]
fn position_range(&self) -> PointRange {
self.raw().position_range()
}
/// Edit this node to keep it in-sync with source code that has been edited. See
/// [tree-sitter's `Node::edit`](raw::Node::edit)
#[inline]
fn edit(&mut self, edit: &InputEdit) {
self.raw_mut().edit(edit)
}
// endregion
}
struct Prefixes<'tree> {
cursor: raw::TreeCursor<'tree>,
end: raw::Node<'tree>,
}
struct Suffixes<'tree> {
cursor: raw::TreeCursor<'tree>,
}
impl<'tree> Prefixes<'tree> {
fn new(raw: raw::Node<'tree>) -> Self {
let Some(parent) = raw.parent() else {
return Self { cursor: raw.walk(), end: raw };
};
let mut cursor = parent.walk();
cursor.goto_first_child();
'outer: loop {
if cursor.node() == raw {
break Self { cursor: raw.walk(), end: raw };
}
if cursor.node().is_extra() {
let mut cursor2 = cursor.clone();
while cursor2.node().is_extra() {
if !cursor2.goto_next_sibling() {
break 'outer Self { cursor: raw.walk(), end: raw };
}
if cursor2.node() == raw {
break 'outer Self { cursor, end: raw };
}
}
}
if !cursor.goto_next_sibling() {
break Self { cursor: raw.walk(), end: raw };
}
}
}
}
impl<'tree> Suffixes<'tree> {
fn new(raw: raw::Node<'tree>) -> Self {
let Some(parent) = raw.parent() else {
return Self { cursor: raw.walk() }
};
let mut cursor = parent.walk();
cursor.goto_first_child();
while cursor.node() != raw {
let next = cursor.goto_next_sibling();
assert!(next, "node not found in parent");
}
Self { cursor }
}
}
impl<'tree> Iterator for Prefixes<'tree> {
type Item = UntypedNode<'tree>;
fn next(&mut self) -> Option<Self::Item> {
if self.cursor.node() == self.end {
return None;
}
let result = UntypedNode::new(self.cursor.node());
debug_assert!(
self.cursor.node().is_extra(),
"node before our iteration target isn't an extra, but we thought it would be"
);
let next = self.cursor.goto_next_sibling();
assert!(next, "node (that we've been iterating the prefixes of) not found in parent");
Some(result)
}
}
impl<'tree> Iterator for Suffixes<'tree> {
type Item = UntypedNode<'tree>;
fn next(&mut self) -> Option<Self::Item> {
if !self.cursor.goto_next_sibling() || !self.cursor.node().is_extra() {
return None
}
Some(UntypedNode::new(self.cursor.node()))
}
}