tycho_common/simulation/
protocol_sim.rs

1use std::{any::Any, collections::HashMap, fmt};
2
3use num_bigint::BigUint;
4
5use crate::{
6    dto::ProtocolStateDelta,
7    models::token::Token,
8    simulation::{
9        errors::{SimulationError, TransitionError},
10        indicatively_priced::IndicativelyPriced,
11    },
12    Bytes,
13};
14
15#[derive(Default)]
16pub struct Balances {
17    pub component_balances: HashMap<String, HashMap<Bytes, Bytes>>,
18    pub account_balances: HashMap<Bytes, HashMap<Bytes, Bytes>>,
19}
20
21/// GetAmountOutResult struct represents the result of getting the amount out of a trading pair
22///
23/// # Fields
24///
25/// * `amount`: BigUint, the amount of the trading pair
26/// * `gas`: BigUint, the gas of the trading pair
27#[derive(Debug)]
28pub struct GetAmountOutResult {
29    pub amount: BigUint,
30    pub gas: BigUint,
31    pub new_state: Box<dyn ProtocolSim>,
32}
33
34impl GetAmountOutResult {
35    /// Constructs a new GetAmountOutResult struct with the given amount and gas
36    pub fn new(amount: BigUint, gas: BigUint, new_state: Box<dyn ProtocolSim>) -> Self {
37        GetAmountOutResult { amount, gas, new_state }
38    }
39
40    /// Aggregates the given GetAmountOutResult struct to the current one.
41    /// It updates the amount with the other's amount and adds the other's gas to the current one's
42    /// gas.
43    pub fn aggregate(&mut self, other: &Self) {
44        self.amount = other.amount.clone();
45        self.gas += &other.gas;
46    }
47}
48
49impl fmt::Display for GetAmountOutResult {
50    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
51        write!(f, "amount = {}, gas = {}", self.amount, self.gas)
52    }
53}
54
55/// Represents a price as a fraction in the token_in -> token_out direction with units
56/// `[token_out/token_in]`.
57///
58/// # Fields
59///
60/// * `numerator` - The amount of token_out (what you receive) in atomic units (wei)
61/// * `denominator` - The amount of token_in (what you pay) in atomic units (wei)
62///
63/// A fraction struct is used for price to have flexibility in precision independent of the
64/// decimal precisions of the numerator and denominator tokens. This allows for:
65/// - Exact price representation without floating-point errors
66/// - Handling tokens with different decimal places without loss of precision
67///
68/// # Example
69/// If we want to represent that token A is worth 2.5 units of token B:
70///
71/// ```
72/// use num_bigint::BigUint;
73/// use tycho_common::simulation::protocol_sim::Price;
74///
75/// let numerator = BigUint::from(25u32); // Represents 25 units of token B
76/// let denominator = BigUint::from(10u32); // Represents 10 units of token A
77/// let price = Price::new(numerator, denominator);
78/// ```
79///
80/// If you want to define a limit price for a trade, where you expect to get at least 120 T1 for
81/// 50 T2:
82/// ```
83/// use num_bigint::BigUint;
84/// use tycho_common::simulation::protocol_sim::Price;
85///
86/// let min_amount_out = BigUint::from(120u32); // The minimum amount of T1 you expect
87/// let amount_in = BigUint::from(50u32); // The amount of T2 you are selling
88/// let limit_price = Price::new(min_amount_out, amount_in);
89/// ```
90#[derive(Debug, Clone, PartialEq, Eq)]
91pub struct Price {
92    pub numerator: BigUint,
93    pub denominator: BigUint,
94}
95
96impl Price {
97    pub fn new(numerator: BigUint, denominator: BigUint) -> Self {
98        if denominator == BigUint::ZERO {
99            // Division by zero is not possible
100            panic!("Price denominator cannot be zero");
101        } else if numerator == BigUint::ZERO {
102            // Zero pool price is not valid in our context
103            panic!("Price numerator cannot be zero");
104        }
105        Self { numerator, denominator }
106    }
107}
108
109/// Represents a pool swap between two tokens at a given price on a pool.
110#[derive(Debug, Clone)]
111pub struct PoolSwap {
112    /// The amount of token_in sold to the pool
113    amount_in: BigUint,
114    /// The amount of token_out bought from the pool
115    amount_out: BigUint,
116    /// The new state of the pool after the swap
117    new_state: Box<dyn ProtocolSim>,
118    /// Optional price points that the pool was transitioned through while computing this swap.
119    /// The values are tuples of (amount_in, amount_out, price). This is useful for repeated calls
120    /// by providing good bounds for the next call.
121    price_points: Option<Vec<(BigUint, BigUint, f64)>>,
122}
123
124impl PoolSwap {
125    pub fn new(
126        amount_in: BigUint,
127        amount_out: BigUint,
128        new_state: Box<dyn ProtocolSim>,
129        price_points: Option<Vec<(BigUint, BigUint, f64)>>,
130    ) -> Self {
131        Self { amount_in, amount_out, new_state, price_points }
132    }
133
134    pub fn amount_in(&self) -> &BigUint {
135        &self.amount_in
136    }
137
138    pub fn amount_out(&self) -> &BigUint {
139        &self.amount_out
140    }
141
142    pub fn new_state(&self) -> &dyn ProtocolSim {
143        self.new_state.as_ref()
144    }
145
146    pub fn price_points(&self) -> &Option<Vec<(BigUint, BigUint, f64)>> {
147        &self.price_points
148    }
149}
150
151/// Options on how to constrain the pool swap query.
152///
153/// All prices use units `[token_out/token_in]` with amounts in atomic units (wei). When selling
154/// token_in into a pool, prices decrease due to slippage.
155#[derive(Debug, Clone, PartialEq)]
156pub enum SwapConstraint {
157    /// Calculates the maximum trade while respecting a minimum trade price.
158    TradeLimitPrice {
159        /// The minimum acceptable trade price. The resulting `amount_out / amount_in >= limit`.
160        limit: Price,
161        /// Fraction to raise the acceptance threshold above `limit`. Loosens the search criteria
162        /// but will never allow violating the trade limit price itself.
163        tolerance: f64,
164        /// The minimum amount of token_in that must be used for this trade.
165        min_amount_in: Option<BigUint>,
166        /// The maximum amount of token_in that can be used for this trade.
167        max_amount_in: Option<BigUint>,
168    },
169
170    /// Calculates the swap required to move the pool's marginal price down to a target.
171    ///
172    /// # Edge Cases and Limitations
173    ///
174    /// Computing the exact amount to move a pool's marginal price to a target has several
175    /// challenges:
176    /// - The definition of marginal price varies between protocols. It is usually not an attribute
177    ///   of the pool but a consequence of its liquidity distribution and current state.
178    /// - For protocols with concentrated liquidity, the marginal price is discrete, meaning we
179    ///   can't always find an exact trade amount to reach the target price.
180    /// - Not all protocols support analytical solutions for this problem, requiring numerical
181    ///   methods.
182    PoolTargetPrice {
183        /// The target marginal price for the pool after the trade. The pool's price decreases
184        /// toward this target as token_in is sold into it.
185        target: Price,
186        /// Fraction above `target` considered acceptable. After trading, the pool's marginal
187        /// price will be in `[target, target * (1 + tolerance)]`.
188        tolerance: f64,
189        /// The lower bound for searching algorithms.
190        min_amount_in: Option<BigUint>,
191        /// The upper bound for searching algorithms.
192        max_amount_in: Option<BigUint>,
193    },
194}
195
196/// Represents the parameters for [ProtocolSim::query_pool_swap].
197///
198/// # Fields
199///
200/// * `token_in` - The token being sold (swapped into the pool)
201/// * `token_out` - The token being bought (swapped out of the pool)
202/// * `swap_constraint` - Type of price constraint to be applied. See [SwapConstraint].
203#[derive(Debug, Clone, PartialEq)]
204pub struct QueryPoolSwapParams {
205    token_in: Token,
206    token_out: Token,
207    swap_constraint: SwapConstraint,
208}
209
210impl QueryPoolSwapParams {
211    pub fn new(token_in: Token, token_out: Token, swap_constraint: SwapConstraint) -> Self {
212        Self { token_in, token_out, swap_constraint }
213    }
214
215    /// Returns a reference to the input token (token being sold into the pool)
216    pub fn token_in(&self) -> &Token {
217        &self.token_in
218    }
219
220    /// Returns a reference to the output token (token being bought out of the pool)
221    pub fn token_out(&self) -> &Token {
222        &self.token_out
223    }
224
225    /// Returns a reference to the price constraint
226    pub fn swap_constraint(&self) -> &SwapConstraint {
227        &self.swap_constraint
228    }
229}
230
231/// ProtocolSim trait
232/// This trait defines the methods that a protocol state must implement in order to be used
233/// in the trade simulation.
234pub trait ProtocolSim: fmt::Debug + Send + Sync + 'static {
235    /// Returns the fee of the protocol as ratio
236    ///
237    /// E.g. if the fee is 1%, the value returned would be 0.01.
238    ///
239    /// # Panics
240    ///
241    /// Currently panic for protocols with asymmetric fees (e.g. Rocketpool, Uniswap V4),
242    /// where a single fee value cannot represent the protocol's fee structure.
243    fn fee(&self) -> f64;
244
245    /// Returns the protocol's current spot buy price for `base` in units of `quote`.
246    ///
247    /// The returned price is the amount of `quote` required to buy exactly 1 unit of `base`,
248    /// accounting for the protocol fee (i.e. `price = pre_fee_price / (1.0 - fee)`)
249    /// and assuming zero slippage (i.e., a negligibly small trade size).
250    ///
251    /// # Arguments
252    /// * `base` - the token being priced (what you buy). For BTC/USDT, BTC is the base token.
253    /// * `quote` - the token used to price (pay) for `base`. For BTC/USDT, USDT is the quote token.
254    ///
255    /// # Examples
256    /// If the BTC/USDT is trading at 1000 with a 20% fee, this returns `1000 / (1.0 - 0.20) = 1250`
257    fn spot_price(&self, base: &Token, quote: &Token) -> Result<f64, SimulationError>;
258
259    /// Returns the amount out given an amount in and input/output tokens.
260    ///
261    /// # Arguments
262    ///
263    /// * `amount_in` - The amount in of the input token.
264    /// * `token_in` - The input token ERC20 token.
265    /// * `token_out` - The output token ERC20 token.
266    ///
267    /// # Returns
268    ///
269    /// A `Result` containing a `GetAmountOutResult` struct on success or a
270    ///  `SimulationError` on failure.
271    fn get_amount_out(
272        &self,
273        amount_in: BigUint,
274        token_in: &Token,
275        token_out: &Token,
276    ) -> Result<GetAmountOutResult, SimulationError>;
277
278    /// Computes the maximum amount that can be traded between two tokens.
279    ///
280    /// This function calculates the maximum possible trade amount between two tokens,
281    /// taking into account the protocol's specific constraints and mechanics.
282    /// The implementation details vary by protocol - for example:
283    /// - For constant product AMMs (like Uniswap V2), this is based on available reserves
284    /// - For concentrated liquidity AMMs (like Uniswap V3), this considers liquidity across tick
285    ///   ranges
286    ///
287    /// Note: if there are no limits, the returned amount will be a "soft" limit,
288    ///       meaning that the actual amount traded could be higher but it's advised to not
289    ///       exceed it.
290    ///
291    /// # Arguments
292    /// * `sell_token` - The address of the token being sold
293    /// * `buy_token` - The address of the token being bought
294    ///
295    /// # Returns
296    /// * `Ok((BigUint, BigUint))` - A tuple containing:
297    ///   - First element: The maximum input amount (sell_token)
298    ///   - Second element: The maximum output amount (buy_token)
299    ///
300    /// For `let res = get_limits(...)`, the valid input domain for `get_amount_out` is `[0,
301    /// res.0]`.
302    ///
303    /// * `Err(SimulationError)` - If any unexpected error occurs
304    fn get_limits(
305        &self,
306        sell_token: Bytes,
307        buy_token: Bytes,
308    ) -> Result<(BigUint, BigUint), SimulationError>;
309
310    /// Decodes and applies a protocol state delta to the state
311    ///
312    /// Will error if the provided delta is missing any required attributes or if any of the
313    /// attribute values cannot be decoded.
314    ///
315    /// # Arguments
316    ///
317    /// * `delta` - A `ProtocolStateDelta` from the tycho indexer
318    ///
319    /// # Returns
320    ///
321    /// * `Result<(), TransitionError<String>>` - A `Result` containing `()` on success or a
322    ///   `TransitionError` on failure.
323    fn delta_transition(
324        &mut self,
325        delta: ProtocolStateDelta,
326        tokens: &HashMap<Bytes, Token>,
327        balances: &Balances,
328    ) -> Result<(), TransitionError<String>>;
329
330    /// Calculates the swap volume required to achieve the provided goal when trading against this
331    /// pool.
332    ///
333    /// This method will branch towards different behaviors based on [SwapConstraint] enum. Please
334    /// refer to its documentation for further details on each behavior.
335    ///
336    /// In short, the current two options are:
337    /// - Maximize your trade while respecting a trade limit price:
338    ///   [SwapConstraint::TradeLimitPrice]
339    /// - Move the pool price to a target price: [SwapConstraint::PoolTargetPrice]
340    ///
341    /// # Arguments
342    ///
343    /// * `params` - A [QueryPoolSwapParams] struct containing the inputs for this method.
344    ///
345    /// # Returns
346    ///
347    /// * `Ok(PoolSwap)` - A `PoolSwap` struct containing the amounts to be traded and the state of
348    ///   the pool after trading.
349    /// * `Err(SimulationError)` - If:
350    ///   - The calculation encounters numerical issues
351    ///   - The method is not implemented for this protocol
352    #[allow(unused)]
353    fn query_pool_swap(&self, params: &QueryPoolSwapParams) -> Result<PoolSwap, SimulationError> {
354        Err(SimulationError::FatalError("query_pool_swap not implemented".into()))
355    }
356
357    /// Clones the protocol state as a trait object.
358    /// This allows the state to be cloned when it is being used as a `Box<dyn ProtocolSim>`.
359    fn clone_box(&self) -> Box<dyn ProtocolSim>;
360
361    /// Allows downcasting of the trait object to its underlying type.
362    fn as_any(&self) -> &dyn Any;
363
364    /// Allows downcasting of the trait object to its mutable underlying type.
365    fn as_any_mut(&mut self) -> &mut dyn Any;
366
367    /// Compares two protocol states for equality.
368    /// This method must be implemented to define how two protocol states are considered equal
369    /// (used for tests).
370    fn eq(&self, other: &dyn ProtocolSim) -> bool;
371
372    /// Cast as IndicativelyPriced. This is necessary for RFQ protocols
373    fn as_indicatively_priced(&self) -> Result<&dyn IndicativelyPriced, SimulationError> {
374        Err(SimulationError::FatalError("Pool State does not implement IndicativelyPriced".into()))
375    }
376}
377
378impl Clone for Box<dyn ProtocolSim> {
379    fn clone(&self) -> Box<dyn ProtocolSim> {
380        self.clone_box()
381    }
382}