1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
use core::fmt;
use std::str::FromStr;

use arbitrary::Arbitrary;
use bfieldcodec_derive::BFieldCodec;
use get_size::GetSize;
use itertools::Itertools;
use num_bigint::BigUint;
use num_traits::Zero;
use rand::Rng;
use rand_distr::Distribution;
use rand_distr::Standard;
use serde::Deserialize;
use serde::Serialize;

use crate::error::TryFromDigestError;
use crate::math::b_field_element::BFieldElement;
use crate::math::b_field_element::BFIELD_ZERO;
use crate::util_types::algebraic_hasher::AlgebraicHasher;

pub const DIGEST_LENGTH: usize = 5;

#[derive(
    Clone, Copy, Debug, Serialize, Deserialize, PartialEq, Eq, Hash, BFieldCodec, Arbitrary,
)]
pub struct Digest(pub [BFieldElement; DIGEST_LENGTH]);

impl GetSize for Digest {
    fn get_stack_size() -> usize {
        std::mem::size_of::<Self>()
    }

    fn get_heap_size(&self) -> usize {
        0
    }
}

impl PartialOrd for Digest {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Digest {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        let Digest(self_inner) = self;
        let Digest(other_inner) = other;
        let self_as_u64s = self_inner.iter().rev().map(|bfe| bfe.value());
        let other_as_u64s = other_inner.iter().rev().map(|bfe| bfe.value());
        self_as_u64s.cmp(other_as_u64s)
    }
}

impl Digest {
    pub const BYTES: usize = DIGEST_LENGTH * BFieldElement::BYTES;

    pub fn values(self) -> [BFieldElement; DIGEST_LENGTH] {
        self.0
    }

    pub const fn new(digest: [BFieldElement; DIGEST_LENGTH]) -> Self {
        Self(digest)
    }

    /// Returns a new digest but whose elements are reversed relative to self.
    /// This function is an involutive endomorphism.
    pub const fn reversed(self) -> Digest {
        Digest([self.0[4], self.0[3], self.0[2], self.0[1], self.0[0]])
    }
}

impl Default for Digest {
    fn default() -> Self {
        Self([BFIELD_ZERO; DIGEST_LENGTH])
    }
}

impl fmt::Display for Digest {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.0.map(|elem| elem.to_string()).join(","))
    }
}

impl Distribution<Digest> for Standard {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Digest {
        // FIXME: impl Fill for [BFieldElement] to rng.fill() a [BFieldElement; DIGEST_LENGTH].
        let elements = rng
            .sample_iter(Standard)
            .take(DIGEST_LENGTH)
            .collect_vec()
            .try_into()
            .unwrap();
        Digest::new(elements)
    }
}

impl FromStr for Digest {
    type Err = TryFromDigestError;

    fn from_str(string: &str) -> Result<Self, Self::Err> {
        let maybe_parsed_bfes: Result<Vec<_>, _> =
            string.split(',').map(str::parse::<BFieldElement>).collect();
        let parsed_bfes = maybe_parsed_bfes?;
        let invalid_len_err = Self::Err::InvalidLength(parsed_bfes.len());
        let digest_innards = parsed_bfes.try_into().map_err(|_| invalid_len_err)?;

        Ok(Digest(digest_innards))
    }
}

impl TryFrom<&[BFieldElement]> for Digest {
    type Error = TryFromDigestError;

    fn try_from(value: &[BFieldElement]) -> Result<Self, Self::Error> {
        let len = value.len();
        let maybe_digest = value.try_into().map(Digest::new);
        maybe_digest.map_err(|_| Self::Error::InvalidLength(len))
    }
}

impl TryFrom<Vec<BFieldElement>> for Digest {
    type Error = TryFromDigestError;

    fn try_from(value: Vec<BFieldElement>) -> Result<Self, Self::Error> {
        Digest::try_from(value.as_ref())
    }
}

impl From<Digest> for Vec<BFieldElement> {
    fn from(val: Digest) -> Self {
        val.0.to_vec()
    }
}

impl From<Digest> for [u8; Digest::BYTES] {
    fn from(item: Digest) -> Self {
        let u64s = item.0.iter().map(|x| x.value());
        u64s.map(|x| x.to_ne_bytes())
            .collect::<Vec<_>>()
            .concat()
            .try_into()
            .unwrap()
    }
}

impl From<[u8; Digest::BYTES]> for Digest {
    fn from(item: [u8; Digest::BYTES]) -> Self {
        let chunk_into_bfe = |chunk: &[u8]| {
            let mut arr = [0u8; BFieldElement::BYTES];
            arr.copy_from_slice(chunk);
            BFieldElement::from(arr)
        };

        let digest_innards = item
            .chunks_exact(BFieldElement::BYTES)
            .map(chunk_into_bfe)
            .collect_vec()
            .try_into()
            .unwrap();

        Self(digest_innards)
    }
}

impl TryFrom<BigUint> for Digest {
    type Error = TryFromDigestError;

    fn try_from(value: BigUint) -> Result<Self, Self::Error> {
        let mut remaining = value;
        let mut digest_innards = [BFIELD_ZERO; DIGEST_LENGTH];
        let modulus: BigUint = BFieldElement::P.into();
        for digest_element in digest_innards.iter_mut() {
            let element = u64::try_from(remaining.clone() % modulus.clone()).unwrap();
            *digest_element = BFieldElement::new(element);
            remaining /= modulus.clone();
        }

        if !remaining.is_zero() {
            return Err(Self::Error::Overflow);
        }

        Ok(Digest::new(digest_innards))
    }
}

impl From<Digest> for BigUint {
    fn from(digest: Digest) -> Self {
        let Digest(digest_innards) = digest;
        let mut ret = BigUint::zero();
        let modulus: BigUint = BFieldElement::P.into();
        for i in (0..DIGEST_LENGTH).rev() {
            ret *= modulus.clone();
            let digest_element: BigUint = digest_innards[i].value().into();
            ret += digest_element;
        }

        ret
    }
}

impl Digest {
    /// Simulates the VM as it hashes a digest. This
    /// method invokes hash_pair with the right operand being the zero
    /// digest, agreeing with the standard way to hash a digest in the
    /// virtual machine.
    pub fn hash<H: AlgebraicHasher>(self) -> Digest {
        H::hash_pair(self, Digest::new([BFieldElement::zero(); DIGEST_LENGTH]))
    }
}

#[cfg(test)]
pub(crate) mod digest_tests {
    use num_traits::One;
    use proptest::collection::vec;
    use proptest::prelude::Arbitrary as ProptestArbitrary;
    use proptest::prelude::*;
    use proptest_arbitrary_interop::arb;
    use test_strategy::proptest;

    use super::*;
    use crate::prelude::*;

    impl ProptestArbitrary for Digest {
        type Parameters = ();
        fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
            arb().prop_map(|d| d).no_shrink().boxed()
        }

        type Strategy = BoxedStrategy<Self>;
    }

    /// Test helper struct for corrupting digests. Primarily used for negative tests.
    #[derive(Debug, Clone, PartialEq, Eq, test_strategy::Arbitrary)]
    pub(crate) struct DigestCorruptor {
        #[strategy(vec(0..DIGEST_LENGTH, 1..DIGEST_LENGTH))]
        #[filter(#corrupt_indices.iter().all_unique())]
        corrupt_indices: Vec<usize>,

        #[strategy(vec(arb(), #corrupt_indices.len()))]
        corrupt_elements: Vec<BFieldElement>,
    }

    impl DigestCorruptor {
        pub fn corrupt_digest(&self, digest: Digest) -> Result<Digest, TestCaseError> {
            let mut corrupt_digest = digest;
            for (&i, &element) in self.corrupt_indices.iter().zip(&self.corrupt_elements) {
                corrupt_digest.0[i] = element;
            }
            if corrupt_digest == digest {
                let reject_reason = "corruption must change digest".into();
                return Err(TestCaseError::Reject(reject_reason));
            }

            Ok(corrupt_digest)
        }
    }

    #[test]
    fn digest_corruptor_rejects_uncorrupting_corruption() {
        let digest = Digest(bfe_array![1, 2, 3, 4, 5]);
        let corruptor = DigestCorruptor {
            corrupt_indices: vec![0],
            corrupt_elements: bfe_vec![1],
        };
        let err = corruptor.corrupt_digest(digest).unwrap_err();
        assert!(matches!(err, TestCaseError::Reject(_)));
    }

    #[test]
    fn get_size() {
        let stack = Digest::get_stack_size();

        let bfes = bfe_array![12, 24, 36, 48, 60];
        let tip5_digest_type_from_array: Digest = Digest::new(bfes);
        let heap = tip5_digest_type_from_array.get_heap_size();
        let total = tip5_digest_type_from_array.get_size();
        println!("stack: {stack} + heap: {heap} = {total}");

        assert_eq!(stack + heap, total)
    }

    #[test]
    pub fn digest_from_str() {
        let valid_digest_string = "12063201067205522823,\
            1529663126377206632,\
            2090171368883726200,\
            12975872837767296928,\
            11492877804687889759";
        let valid_digest = Digest::from_str(valid_digest_string);
        assert!(valid_digest.is_ok());

        let invalid_digest_string = "00059361073062755064,05168490802189810700";
        let invalid_digest = Digest::from_str(invalid_digest_string);
        assert!(invalid_digest.is_err());

        let second_invalid_digest_string = "this_is_not_a_bfield_element,05168490802189810700";
        let second_invalid_digest = Digest::from_str(second_invalid_digest_string);
        assert!(second_invalid_digest.is_err());
    }

    #[proptest]
    fn test_reversed_involution(digest: Digest) {
        prop_assert_eq!(digest, digest.reversed().reversed())
    }

    #[test]
    fn digest_biguint_conversion_simple_test() {
        let fourteen: BigUint = 14u128.into();
        let fourteen_converted_expected = Digest(bfe_array![14, 0, 0, 0, 0]);

        let bfe_max: BigUint = BFieldElement::MAX.into();
        let bfe_max_converted_expected = Digest(bfe_array![BFieldElement::MAX, 0, 0, 0, 0]);

        let bfe_max_plus_one: BigUint = BFieldElement::P.into();
        let bfe_max_plus_one_converted_expected = Digest(bfe_array![0, 1, 0, 0, 0]);

        let two_pow_64: BigUint = (1u128 << 64).into();
        let two_pow_64_converted_expected = Digest(bfe_array![(1u64 << 32) - 1, 1, 0, 0, 0]);

        let two_pow_123: BigUint = (1u128 << 123).into();
        let two_pow_123_converted_expected =
            Digest([18446744069280366593, 576460752437641215, 0, 0, 0].map(BFieldElement::new));

        let two_pow_315: BigUint = BigUint::from(2u128).pow(315);

        // Result calculated on Wolfram alpha
        let two_pow_315_converted_expected = Digest(bfe_array![
            18446744069280366593_u64,
            1729382257312923647_u64,
            13258597298683772929_u64,
            3458764513015234559_u64,
            576460752840294400_u64,
        ]);

        // Verify conversion from BigUint to Digest
        assert_eq!(
            fourteen_converted_expected,
            fourteen.clone().try_into().unwrap()
        );
        assert_eq!(
            bfe_max_converted_expected,
            bfe_max.clone().try_into().unwrap()
        );
        assert_eq!(
            bfe_max_plus_one_converted_expected,
            bfe_max_plus_one.clone().try_into().unwrap()
        );
        assert_eq!(
            two_pow_64_converted_expected,
            two_pow_64.clone().try_into().unwrap()
        );
        assert_eq!(
            two_pow_123_converted_expected,
            two_pow_123.clone().try_into().unwrap()
        );
        assert_eq!(
            two_pow_315_converted_expected,
            two_pow_315.clone().try_into().unwrap()
        );

        // Verify conversion from Digest to BigUint
        assert_eq!(fourteen, fourteen_converted_expected.into());
        assert_eq!(bfe_max, bfe_max_converted_expected.into());
        assert_eq!(bfe_max_plus_one, bfe_max_plus_one_converted_expected.into());
        assert_eq!(two_pow_64, two_pow_64_converted_expected.into());
        assert_eq!(two_pow_123, two_pow_123_converted_expected.into());
        assert_eq!(two_pow_315, two_pow_315_converted_expected.into());
    }

    #[proptest]
    fn digest_biguint_conversion_pbt(components_0: [u64; 4], component_1: u32) {
        let big_uint = components_0
            .into_iter()
            .fold(BigUint::one(), |acc, x| acc * x);
        let big_uint = big_uint * component_1;

        let as_digest: Digest = big_uint.clone().try_into().unwrap();
        let big_uint_again: BigUint = as_digest.into();
        prop_assert_eq!(big_uint, big_uint_again);
    }

    #[test]
    fn digest_ordering() {
        let val0 = Digest::new([bfe!(0); DIGEST_LENGTH]);
        let val1 = Digest::new(bfe_array![14, 0, 0, 0, 0]);
        assert!(val1 > val0);

        let val2 = Digest::new([bfe!(14); DIGEST_LENGTH]);
        assert!(val2 > val1);
        assert!(val2 > val0);

        let val3 = Digest::new(bfe_array![15, 14, 14, 14, 14]);
        assert!(val3 > val2);
        assert!(val3 > val1);
        assert!(val3 > val0);

        let val4 = Digest::new(bfe_array![14, 15, 14, 14, 14]);
        assert!(val4 > val3);
        assert!(val4 > val2);
        assert!(val4 > val1);
        assert!(val4 > val0);
    }

    #[test]
    fn digest_biguint_overflow_test() {
        let mut two_pow_384: BigUint = (1u128 << 96).into();
        two_pow_384 = two_pow_384.pow(4);
        let err = Digest::try_from(two_pow_384).unwrap_err();

        assert_eq!(TryFromDigestError::Overflow, err);
    }

    #[proptest]
    fn forty_bytes_can_be_converted_to_digest(bytes: [u8; Digest::BYTES]) {
        let digest = Digest::from(bytes);
        let bytes_again: [u8; Digest::BYTES] = digest.into();
        prop_assert_eq!(bytes, bytes_again);
    }
}