1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
use log::{debug, error, info, warn};
use pest::Parser;
use pest_derive::Parser;
use std::{collections::HashMap, fmt::Write};
use crate::{
instruction::Movement, warnings::ErrorPosition, CompilerError, CompilerWarning, Library,
TuringInstruction,
};
use super::TuringOutput;
#[derive(Parser)]
#[grammar = "../turing.pest"]
pub struct TuringParser;
#[derive(Debug, Clone)]
/// A Turing machine
pub struct TuringMachine {
/// The dictionary of instructions for the machine.
pub instructions: HashMap<(String, bool), TuringInstruction>,
/// The final states of the machine. If the machine reaches one of these states, it will stop.
pub final_states: Vec<String>,
/// The current state of the machine.
pub current_state: String,
/// The position of the head on the tape.
pub tape_position: usize,
/// The binary tape of the machine.
pub tape: Vec<bool>,
/// The frequencies of the states. Used to detect infinite loops.
pub frequencies: HashMap<String, usize>,
/// The description of the machine. Found in the `///` comments at the top of the file.
pub description: Option<String>,
/// The composed libraries that the machine uses.
/// Used only as information, since their instructions are already compiled into the machine.
pub composed_libs: Vec<Library>,
/// The actual code of the machine. Used for resetting the machine and debugging.
pub code: String,
}
impl TuringMachine {
/// Create a new Turing machine from a string of code
pub fn new(code: &str) -> Result<(Self, Vec<CompilerWarning>), CompilerError> {
let mut instructions: HashMap<(String, bool), TuringInstruction> = HashMap::new();
let mut final_states: Vec<String> = Vec::new();
let mut current_state: String = String::new();
let mut tape: Vec<bool> = Vec::new();
let mut description: Option<String> = None;
let mut composed: Vec<Library> = Vec::new();
let mut warnings: Vec<CompilerWarning> = Vec::new();
let file = match TuringParser::parse(Rule::file, code) {
Ok(mut f) => f.next().unwrap(),
Err(error) => return Err(CompilerError::FileRuleError { error }),
};
for record in file.into_inner() {
let record_span = &record.as_span();
match record.as_rule() {
Rule::description => {
let s = record.as_str();
if !s.is_empty() {
description = Some(String::from(s.replace("///", "").trim()));
debug!("Found description: \"{:?}\"", description);
}
}
Rule::COMMENT => debug!("Found comment: \"{:?}\"", record.as_str()),
Rule::tape => {
debug!(
"Entered tape rule: {}",
record.clone().into_inner().as_str()
);
// Used to extract the position of the error (if any)
// A span contains the start and end position of the error, while a Pair only contains the start position
let span = record.line_col();
let code = record.clone().into_inner().as_str();
for r in record.into_inner() {
match r.as_rule() {
Rule::value => {
if tape.is_empty() && r.as_str() == "0" {
info!("The tape started with a 0, skipping it");
} else {
tape.push(r.as_str() == "1");
}
}
_ => warn!(
"Unhandled: ({:?}, {})",
r.as_rule(),
r.into_inner().as_str()
),
}
}
debug!("Initial state: {}", current_state);
debug!("Tape: {:?}", tape);
if tape.is_empty() || !tape.contains(&true) {
error!("The tape did not contain at least a 1");
return Err(CompilerError::SyntaxError {
position: span.into(),
message: String::from("Expected at least a 1 in the tape"),
code: String::from(code),
expected: Rule::tape,
found: None,
});
}
}
Rule::initial_state => {
current_state = String::from(record.into_inner().as_str());
debug!("The initial tape state is \"{}\"", current_state);
}
Rule::final_state => {
final_states = record
.into_inner()
.map(|v| String::from(v.as_span().as_str()))
.collect();
debug!("The final tape state is {:?}", final_states);
}
Rule::composition => {
debug!("Entered composition rule");
for r in record.into_inner() {
match r.as_rule() {
Rule::function_name => {
debug!("Found composition of: {}", r.as_str());
let mut lib: Option<Library> = None;
for l in super::LIBRARIES {
if l.name == r.as_str() {
lib = Some(l);
break;
}
}
if let Some(library) = lib {
debug!("Found the library, composing...");
instructions.extend(library.get_instructions());
composed.push(library.clone());
} else {
error!("Could not find the library \"{}\"", r.as_str());
let (line, column) = r.line_col();
return Err(CompilerError::SyntaxError {
position: ErrorPosition::new((line, column), None),
message: format!(
"Could not find the library \"{}\"",
r.as_str()
),
code: String::from(r.as_str()),
expected: r.as_rule(),
found: None,
});
}
}
_ => warn!(
"Unhandled: ({:?}, {})",
r.as_rule(),
r.into_inner().as_str()
),
}
}
}
Rule::instruction => {
let tmp = TuringInstruction::from(record.into_inner());
if instructions.contains_key(&(tmp.from_state.clone(), tmp.from_value.clone()))
{
warn!("Instruction {} already exists, overwriting it", tmp.clone());
warnings.push(CompilerWarning::StateOverwrite {
position: record_span.into(),
state: tmp.from_state.clone(),
value_from: tmp.from_value.clone(),
})
}
instructions.insert(
(tmp.from_state.clone(), tmp.from_value.clone()),
tmp.clone(),
);
debug!("Found instruction {}", tmp);
}
Rule::EOI => {
debug!("End of file");
}
_ => {
warn!("Unhandled: {}", record.into_inner().as_str());
}
}
}
let mut tape_position = 0;
while tape_position <= 2 {
tape.insert(0, false);
tape_position += 1;
}
debug!("The instructions are {:?}", instructions);
Ok((
Self {
instructions,
final_states,
current_state,
tape_position,
tape,
frequencies: HashMap::new(),
description,
composed_libs: composed,
code: String::from(code),
},
warnings,
))
}
/// Create a new empty Turing machine
pub fn none() -> Self {
let state = String::from("f");
let mut instructions: HashMap<(String, bool), TuringInstruction> = HashMap::new();
instructions.insert(
(String::from("F"), false),
TuringInstruction {
from_state: state.clone(),
from_value: false,
to_value: false,
movement: Movement::HALT,
to_state: state.clone(),
},
);
let final_states: Vec<String> = vec![state.clone()];
let current_state: String = state.clone();
let tape: Vec<bool> = vec![false, false, false, false, false];
let description: Option<String> = None;
Self {
instructions,
final_states,
current_state,
tape_position: 2,
tape,
frequencies: HashMap::new(),
description,
composed_libs: Vec::new(),
code: String::new(),
}
}
/// Parse a Turing machine code syntax error
/// and print it to the console
pub fn handle_error(error: CompilerError) {
error!("I found an error while parsing the file!");
let position = error.position();
debug!("Error position: {:?}", position);
error!(
"Error at {}: {}\n\t{}\n\t{:~>width1$}{:^<width2$}{:~<width3$}",
position,
error.message(),
error.code(),
"~",
"^",
"~",
width1 = position.start.1,
width2 = position.end.unwrap_or((0, position.start.1 + 1)).1 - position.start.1,
width3 = error.code().len() - position.end.unwrap_or((0, position.start.1 + 1)).1
);
println!("\nPress enter to exit");
let mut input = String::new();
std::io::stdin().read_line(&mut input).unwrap_or_default();
}
/// Gets the current instruction, or a halt instruction if the current state is a final state
/// even if there is no instruction for the current state and value
fn get_instruction(&self) -> Option<TuringInstruction> {
let current_val: bool = self.tape[self.tape_position];
let index = (self.current_state.clone(), current_val);
match self.instructions.get(&index) {
Some(i) => Some(i.to_owned()),
None => {
if !self.final_states.contains(&self.current_state) {
return None;
}
Some(TuringInstruction::halt(index))
}
}
}
/// Gets the current instruction
pub fn get_current_instruction(&self) -> Option<TuringInstruction> {
let current_val: bool = self.tape[self.tape_position];
let index = (self.current_state.clone(), current_val);
self.instructions.get(&index).cloned()
}
/// Returns true if the current state is undefined
/// (i.e. there is no instruction for the current state and value)
/// except if the current state is a final state
pub fn is_undefined(&self) -> bool {
self.get_instruction().is_none()
}
/// Calculates the next step of the Turing machine and returns true if the current state is a final state
pub fn step(&mut self) -> bool {
let current_val: bool = self.tape[self.tape_position];
let Some(instruction) = self.get_instruction() else {
if self.final_states.contains(&self.current_state) {
return true;
}
error!(
"No instruction given for state ({}, {})",
self.current_state.clone(),
if current_val {"1"} else {"0"}
);
return true;
};
self.tape[self.tape_position] = instruction.to_value;
match instruction.movement {
Movement::LEFT => {
if self.tape_position == 0 {
self.tape.insert(0, false);
} else {
self.tape_position -= 1;
}
}
Movement::RIGHT => {
if self.tape_position == self.tape.len() - 1 {
self.tape.push(false);
}
self.tape_position += 1;
}
Movement::HALT => {}
}
while self.tape_position <= 2 {
self.tape.insert(0, false);
self.tape_position += 1;
}
while self.tape_position >= self.tape.len() - 3 {
self.tape.push(false);
}
self.update_state(instruction.to_state.clone())
}
/// Updates the current state and returns true if the current state is a final state
fn update_state(&mut self, state: String) -> bool {
self.current_state = state.clone();
if self.frequencies.contains_key(&state) {
let Some(f) = self.frequencies.get_mut(&state) else {
return self.final_states.contains(&self.current_state);
};
*f += 1;
} else {
self.frequencies.insert(state.clone(), 1);
}
return self.final_states.contains(&self.current_state);
}
/// Returns true if the current state has been reached more times than the given threshold
pub fn is_infinite_loop(&self, threshold: usize) -> bool {
for (_, v) in self.frequencies.iter() {
if *v > threshold {
return true;
}
}
return false;
}
/// Resets the frequencies of the states
pub fn reset_frequencies(&mut self) {
self.frequencies = HashMap::new();
}
/// Returns true if the current state is a final state
pub fn finished(&self) -> bool {
return self.final_states.contains(&self.current_state);
}
/// Returns the values of the tape
/// (i.e. the number of 1s between each 0)
pub fn values(&self) -> Vec<u32> {
let tmp: String = self
.tape
.iter()
.map(|v| if *v { "1" } else { "0" })
.collect();
tmp.split("0")
.filter_map(|s| {
if s.len() > 0 {
Some(s.len() as u32 - 1)
} else {
None
}
})
.collect()
}
/// Returns the string representation of the tape
pub fn to_string(&self) -> String {
let mut tmp1 = String::new();
let mut tmp2 = String::new();
for (i, v) in self.tape.iter().enumerate() {
write!(&mut tmp1, "{} ", if v.clone() { "1" } else { "0" }).unwrap();
if i == self.tape_position {
tmp2 += "^ ";
} else {
tmp2 += " ";
}
}
format!("{}\n{}", tmp1, tmp2)
}
/// Returns the current output of the Turing machine
/// (i.e. the number of steps and the number of 1s on the tape,
/// or undefined if the Turing machine is in an undefined state)
pub fn tape_value(&self) -> TuringOutput {
if self.is_undefined() {
return TuringOutput::Undefined(0);
}
TuringOutput::Defined((0, self.tape.iter().map(|v| if *v { 1 } else { 0 }).sum()))
}
/// Returns the final output of the Turing machine directly
/// (i.e. keeps calculating the next step until the current state is a final state)
pub fn final_result(&mut self) -> TuringOutput {
let mut steps = 0;
while !self.finished() {
self.step();
steps += 1;
}
TuringOutput::Defined((
steps,
self.tape.iter().map(|v| if *v { 1 } else { 0 }).sum(),
))
}
}