1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#![no_std]
//! Macro for stable try blocks that performs Ok-wrapping, and otherwise tries to
//! achieve feature parity with RFC 1859. The macro is compatible with any type
//! that implements the unstable `Any` trait through the use of type magic.
//!
//! This crate is a fork of `try-block`, which has not been updated in four years at
//! the time of writing this. This fork adds Ok-wrapping and the promise of future
//! updates.
//!
//! This crate is `no_std` compatible.
/// Macro for ok-wrapping any `Try` type. This works on stable through dark type magic.
///
/// Note that type inference is very finicky; you should give this a type ascription ASAP.
/// ```
/// # use try_blocks::wrap_ok;
/// let r: Result<_, ()> = wrap_ok!(1);
/// assert_eq!(r, Ok(1));
/// ```
#[macro_export]
macro_rules! wrap_ok {
($e:expr) => {{
::core::iter::empty().try_fold($e, |_, x: core::convert::Infallible| match x {})
}};
}
/// Macro for the recieving end of a `?` operation.
/// Right now, type inference is quite finicky so you usually have to declare a concrete type somewhere.
///
/// ```
/// # use try_blocks::try_block;
/// // Note: this fails without explicitly specifying the error type.
/// let y: Result<_, std::num::ParseIntError> = try_block! {
/// "1".parse::<i32>()? + "2".parse::<i32>()?
/// };
/// # assert_eq!(y, Ok(3));
/// ```
/// If you know that a block will have a specific type, it may aid type inference to use
/// the macros [`try_opt`], [`try_res`], and [`try_cf`].
///
/// ## Alternative
/// The only other way to emulate try blocks is with closures, which is very ugly.
///
/// #### Before:
/// ```ignore
/// let result: Result<T, E> = (|| {
/// let a = do_one(x)?;
/// let b = do_two(a)?;
/// Ok(b)
/// })();
/// ```
///
/// #### After:
/// ```
/// # use try_blocks::try_block;
/// # type T = (); type E = ();
/// # fn do_one((): T) -> Result<T, E> { Ok(()) }
/// # fn do_two((): T) -> Result<T, E> { Ok(()) }
/// # let x = ();
/// let result: Result<T, E> = try_block! {
/// let a = do_one(x)?;
/// let b = do_two(a)?;
/// b
/// };
/// ```
#[macro_export]
macro_rules! try_block {
{ $($token:tt)* } => {{
let f = || $crate::wrap_ok!({ $($token)* });
f()
}}
}
/// Like [`try_block`], but specificially for [`Option`]. This aids type inference.
#[macro_export]
macro_rules! try_opt {
{ $($token:tt)* } => {{
let f = || ::core::option::Option::Some({ $($token)* });
f()
}};
}
/// Like [`try_block`], but specificially for [`Result`]]. This aids type inference.
#[macro_export]
macro_rules! try_res {
{ $($token:tt)* } => {{
let f = || ::core::result::Result::Ok({ $($token)* });
f()
}};
}
/// Like [`try_block`], but specificially for [`ControlFlow`]. This aids type inference.
#[macro_export]
macro_rules! try_cf {
{ $($token:tt)* } => {
(|| ::core::ops::ControlFlow::Continue(
{ $($token)* }
))()
};
}
#[cfg(test)]
mod tests {
#[test]
fn parse_sum() {
let result: Result<_, core::num::ParseIntError> = try_block! {
let x = "1".parse::<i32>()?;
let x = "2".parse::<i32>()? + x * 10;
"3".parse::<i32>()? + x * 10
};
assert_eq!(result, Ok(123));
}
#[test]
fn option() {
assert_eq!(
Some(520),
try_block! {
"400".parse::<i32>().ok()? + "20".parse::<i32>().ok()? * "6".parse::<i32>().ok()?
},
);
}
#[test]
fn named() {
try_opt! {
let x = "400".parse::<i32>().ok()?;
let x = x.checked_add(6_900_000)?;
assert_eq!(x, 6_900_400);
}
.unwrap();
let res: Result<_, ()> = try_res! {
1
};
assert_eq!(res, Ok(1));
}
}