Expand description
Tiny, zero-dependency, zero-allocation*, no_std library for generating all possible
combinations of n bools. Useful for testing boolean functions,
verifying logical equivalence, and generating truth tables.
*Optional alloc feature for Vec related functions.
§Example - each() and each_const()
Consider implementing an interpreter or optimizer, and now you want to assert logical equivalence between expressions, e.g. asserting De Morgan’s laws:
- not (A or B) = (not A) and (not B)
- not (A and B) = (not A) or (not B)
Using const generic variant, i.e. where N is const:
each_const(|[a, b]| {
assert_eq!(!(a || b), !a && !b);
assert_eq!(!(a && b), !a || !b);
});
// The closure is called for each combination of 2 `bool`s, i.e.:
// [false, false]
// [true, false]
// [false, true]
// [true, true]Using non-const generic variant, i.e. where n can be dynamic:
each(2, |bools| match bools {
&[a, b] => {
assert_eq!(!(a || b), !a && !b);
assert_eq!(!(a && b), !a || !b);
}
_ => unreachable!(),
});
// The closure is called for each combination of 2 `bool`s, i.e.:
// &[false, false]
// &[true, false]
// &[false, true]
// &[true, true]§Example - gen() and gen_const()
Alternatively, use gen() functions to obtain
an Iterator for generating all combinations. This could be used
to e.g. map each combination into an Expr for an AST, to easily
generate all Expr combinations to verify their evaluation.
Using const generic variant, i.e. where N is const:
#[derive(PartialEq, Debug)]
enum Expr {
Bool(bool),
And(Box<Self>, Box<Self>),
// ...
}
impl Expr {
fn and(lhs: Self, rhs: Self) -> Self {
Self::And(Box::new(lhs), Box::new(rhs))
}
}
let exprs = truth_values::gen_const()
.map(|[a, b]| {
Expr::and(Expr::Bool(a), Expr::Bool(b))
})
.collect::<Vec<_>>();
assert_eq!(
exprs,
[
Expr::and(Expr::Bool(false), Expr::Bool(false)),
Expr::and(Expr::Bool(true), Expr::Bool(false)),
Expr::and(Expr::Bool(false), Expr::Bool(true)),
Expr::and(Expr::Bool(true), Expr::Bool(true)),
]
);Using non-const generic variant, i.e. where n can be dynamic:
let exprs = truth_values::gen_slice(2, |bools| {
match bools {
&[a, b] => {
Expr::and(Expr::Bool(a), Expr::Bool(b))
}
_ => unreachable!(),
}
})
.collect::<Vec<_>>();
assert_eq!(
exprs,
[
Expr::and(Expr::Bool(false), Expr::Bool(false)),
Expr::and(Expr::Bool(true), Expr::Bool(false)),
Expr::and(Expr::Bool(false), Expr::Bool(true)),
Expr::and(Expr::Bool(true), Expr::Bool(true)),
]
);§Combinations of 1, 2, 3, 4 bools
|
|
|
|
|
|
|
|
§Implementation
The gen() functions return an Iterator, which
additionally specializes size_hint(), count(), nth(), last().
The Iterator also implements:
DoubleEndedIteratorimplementingnext_back()andnth_back()ExactSizeIteratorimplementinglen()FusedIterator
§Warning
The amount of combinations is exponential!
The number of combinations for N boolean variables is 2N.
In short, 10 variables produce 1024 combinations, but 20 variables
produce over 1 million combinations.
Just alone exhausting the generator for 30 variables, i.e. over 1 billion combinations, takes a handful of seconds on my machine.
Ideally, if used to test expressions, then there will likely only be a handful of variables. However, if user input is accepted, then it might be worth guarding and limiting the number of variables.
So even though up to MAX (63) variables for 64-bit platforms
is supported, it is probably undesirable to even attempt to process
that many variables.
Structs§
Constants§
- MAX
- Maximum number of variables supported by
gen()functions.
Functions§
- count
- Returns
Somewith the number of combinations thatnvariables produces. - each
- Shorthand for
gen_slice(n, f).for_each(|_| ()). - each_
const - Shorthand for
gen_const().for_each(f). - each_
vec_ slice - Shorthand for
gen_vec_slice(n, f).for_each(|_| ()). - each_
with_ buffer - Shorthand for
gen_with_buffer(n, buffer, f).for_each(|_| ()). - gen
- Returns an
Iteratorproducing all possible combinations ofnbools, in the form of individualBoolsiterators. - gen_
const - Returns an
Iteratorproducing all possible combinations of[bool; N]. - gen_
slice - Returns an
IteratorproducingTfor each possible combinations ofnbools. - gen_vec
- Returns an
IteratorproducingVec<bool>for each possible combinations ofnbools. - gen_
vec_ slice - Returns an
IteratorproducingTfor each possible combinations ofnbools. - gen_
with_ buffer - Returns an
IteratorproducingTfor each possible combinations ofnbools. - is_
supported - Returns
trueifnvariables is supported bygen()functions, i.e.n <= MAX.