1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
use std::{
collections::BTreeMap,
ops::{Bound, RangeBounds},
sync::Arc,
};
use crate::{
interpreter::InterpretedQuery,
ir::{
Argument, FieldRef, FieldValue, IREdge, IRFold, IRQueryComponent, IRVertex, LocalField,
Operation, Vid,
},
};
use super::{dynamic::DynamicallyResolvedValue, CandidateValue, EdgeInfo, Range};
/// Information about what the currently-executing query needs at a specific vertex.
#[cfg_attr(docsrs, doc(notable_trait))]
pub trait VertexInfo: super::sealed::__Sealed {
/// The unique ID of the vertex this [`VertexInfo`] describes.
fn vid(&self) -> Vid;
/// The type coercion (`... on SomeType`) applied by the query at this vertex, if any.
fn coerced_to_type(&self) -> Option<&Arc<str>>;
/// Check whether the query demands this vertex property to have specific values:
/// a single value, or one of a set or range of values. The candidate values
/// are known *statically*: up-front, without executing any of the query.
///
/// For example, filtering a property based on a query variable (e.g.
/// `@filter(op: "=", value: ["$expected"])`) means the filtered property will
/// need to match the value of the `expected` query variable. This variable's value is known
/// up-front at the beginning of query execution, so the filtered property has
/// a statically-required value.
///
/// In contrast, filters relying the value of a `@tag` do not produce
/// statically-required values, since the `@tag` value must be computed at runtime.
/// For this case, see the [`VertexInfo::dynamically_required_property()`] method.
fn statically_required_property(&self, name: &str) -> Option<CandidateValue<&FieldValue>>;
/// Check whether the query demands this vertex property to have specific values:
/// a single value, or one of a set or range of values. The candidate values
/// are only known *dynamically* i.e. require some of the query
/// to have already been executed at the point when this method is called.
///
/// For example, filtering a property with `@filter(op: "=", value: ["%expected"])`
/// means the property must have a value equal to the value of an earlier property
/// whose value is tagged like `@tag(name: "expected")`. If the vertex containing
/// the tagged property has already been resolved in this query, this method will offer
/// to produce candidate values based on that tag's value.
///
/// If *only* static information and no dynamic information is known about a property's value,
/// this method will return `None` in order to avoid unnecessary cloning.
/// The [`VertexInfo::statically_required_property()`] method can be used to retrieve
/// the statically-known information about the property's value.
///
/// If *both* static and dynamic information is known about a property's value, all information
/// will be merged automatically and presented via the output of this method.
fn dynamically_required_property(&self, name: &str) -> Option<DynamicallyResolvedValue>;
/// Returns info for the first not-yet-resolved edge by the given name that is *mandatory*:
/// this vertex must contain the edge, or its result set will be discarded.
///
/// Edges marked `@optional`, `@fold`, or `@recurse` are not mandatory:
/// - `@optional` edges that don't exist produce `null` outputs.
/// - `@fold` edges that don't exist produce empty aggregations.
/// - `@recurse` always starts at depth 0 (i.e. returning the *current* vertex),
/// so the edge is not required to exist.
fn first_mandatory_edge(&self, name: &str) -> Option<EdgeInfo>;
/// Returns info for the first not-yet-resolved edge by the given name.
///
/// Just a convenience wrapper over [`VertexInfo::edges_with_name()`].
fn first_edge(&self, name: &str) -> Option<EdgeInfo>;
/// Returns an iterator of all not-yet-resolved edges by that name originating from this vertex.
///
/// This is the building block of [`VertexInfo::first_edge()`].
/// When possible, prefer using that method as it will lead to more readable code.
fn edges_with_name<'a>(&'a self, name: &'a str) -> Box<dyn Iterator<Item = EdgeInfo> + 'a>;
/// Returns an iterator of all not-yet-resolved edges by that name that are *mandatory*:
/// this vertex must contain the edge, or its result set will be discarded.
///
/// This is the building block of [`VertexInfo::first_mandatory_edge()`].
/// When possible, prefer using that method as it will lead to more readable code.
fn mandatory_edges_with_name<'a>(
&'a self,
name: &'a str,
) -> Box<dyn Iterator<Item = EdgeInfo> + 'a>;
}
pub(super) trait InternalVertexInfo: super::sealed::__Sealed {
fn query(&self) -> &InterpretedQuery;
fn non_binding_filters(&self) -> bool;
/// How far query execution has progressed thus far:
/// - `Bound::Included` means that data from that [`Vid`] is available, and
/// - `Bound::Excluded` means that data from that [`Vid`] is not yet available.
/// Data from vertices with [`Vid`] values smaller than the given number is always available.
fn execution_frontier(&self) -> Bound<Vid>;
/// The vertex that this [`InternalVertexInfo`] represents.
fn current_vertex(&self) -> &IRVertex;
/// The component where the vertex represented by this [`InternalVertexInfo`] is found.
fn current_component(&self) -> &IRQueryComponent;
/// The component where resolution is happening,
/// i.e. where the traversal through the optimization hints began.
fn starting_component(&self) -> &IRQueryComponent;
fn query_variables(&self) -> &BTreeMap<Arc<str>, FieldValue>;
fn make_non_folded_edge_info(&self, edge: &IREdge) -> EdgeInfo;
fn make_folded_edge_info(&self, fold: &IRFold) -> EdgeInfo;
}
impl<T: InternalVertexInfo + super::sealed::__Sealed> VertexInfo for T {
fn vid(&self) -> Vid {
self.current_vertex().vid
}
fn coerced_to_type(&self) -> Option<&Arc<str>> {
let vertex = self.current_vertex();
if vertex.coerced_from_type.is_some() {
Some(&vertex.type_name)
} else {
None
}
}
fn statically_required_property(&self, property: &str) -> Option<CandidateValue<&FieldValue>> {
if self.non_binding_filters() {
// This `VertexInfo` is in a place where the filters applied to fields
// don't actually constrain their value in the usual way that lends itself
// to optimization.
//
// For example, we may be looking at the data of a vertex produced by a `@recurse`,
// where the *final* vertices produced by the recursion must satisfy the filters, but
// intermediate layers of the recursion do not: non-matching ones will get filtered out,
// but only after the edge recurses to their own neighbors as well.
return None;
}
let query_variables = self.query_variables();
// We only care about filtering operations that are both:
// - on the requested property of this vertex, and
// - statically-resolvable, i.e. do not depend on tagged arguments
let mut relevant_filters = filters_on_local_property(self.current_vertex(), property)
.filter(|op| {
// Either there's no "right-hand side" in the operator (as in "is_not_null"),
// or the right-hand side is a variable.
matches!(op.right(), None | Some(Argument::Variable(..)))
})
.peekable();
// Early-return in case there are no filters that apply here.
let field = relevant_filters.peek()?.left();
let candidate =
compute_statically_known_candidate(field, relevant_filters, query_variables);
debug_assert!(
// Ensure we never return a range variant with a completely unrestricted range.
candidate.as_ref().unwrap_or(&CandidateValue::All) != &CandidateValue::Range(Range::full()),
"caught returning a range variant with a completely unrestricted range; it should have been CandidateValue::All instead"
);
candidate
}
fn dynamically_required_property(&self, property: &str) -> Option<DynamicallyResolvedValue> {
if self.non_binding_filters() {
// This `VertexInfo` is in a place where the filters applied to fields
// don't actually constrain their value in the usual way that lends itself
// to optimization.
//
// For example, we may be looking at the data of a vertex produced by a `@recurse`,
// where the *final* vertices produced by the recursion must satisfy the filters, but
// intermediate layers of the recursion do not: non-matching ones will get filtered out,
// but only after the edge recurses to their own neighbors as well.
return None;
}
// We only care about filtering operations that are all of the following:
// - on the requested property of this vertex;
// - dynamically-resolvable, i.e. depend on tagged arguments,
// - the used tagged argument is from a vertex that has already been computed
// at the time this call was made, and
// - use a supported filtering operation using those tagged arguments.
let resolved_range = (Bound::Unbounded, self.execution_frontier());
let relevant_filters: Vec<_> = filters_on_local_property(self.current_vertex(), property)
.filter(|op| {
matches!(
op,
Operation::Equals(..)
| Operation::NotEquals(..)
| Operation::LessThan(..)
| Operation::LessThanOrEqual(..)
| Operation::GreaterThan(..)
| Operation::GreaterThanOrEqual(..)
| Operation::OneOf(..)
) && match op.right() {
Some(Argument::Tag(FieldRef::ContextField(ctx))) => {
// Ensure the vertex holding the @tag has already been computed.
resolved_range.contains(&ctx.vertex_id)
}
Some(Argument::Tag(FieldRef::FoldSpecificField(fsf))) => {
// Ensure the fold holding the @tag has already been computed.
resolved_range.contains(&fsf.fold_root_vid)
}
_ => false,
}
})
.collect();
// Early-return in case there are no filters that apply here.
let first_filter = relevant_filters.first()?;
let initial_candidate = self
.statically_required_property(property)
.unwrap_or_else(|| {
if first_filter.left().field_type.nullable {
CandidateValue::All
} else {
CandidateValue::Range(Range::full_non_null())
}
})
.cloned();
// Right now, this API only supports materializing the constraint from a single tag.
// Choose which @filter to choose as the one providing the value.
//
// In order of priority, we'll choose:
// - an `=` filter
// - a `one_of` filter
// - a `< / <= / > / >=` filter
// - a `!=` filter,
// breaking ties based on which filter was specified first.
let filter_to_use = {
relevant_filters.iter().find(|op| matches!(op, Operation::Equals(..))).unwrap_or_else(
|| {
relevant_filters
.iter()
.find(|op| matches!(op, Operation::OneOf(..)))
.unwrap_or_else(|| {
relevant_filters
.iter()
.find(|op| {
matches!(
op,
Operation::LessThan(..)
| Operation::LessThanOrEqual(..)
| Operation::GreaterThan(..)
| Operation::GreaterThanOrEqual(..)
)
})
.unwrap_or(first_filter)
})
},
)
};
let field = filter_to_use
.right()
.expect("filter did not have an operand")
.as_tag()
.expect("operand was not a tag");
let bare_operation = filter_to_use
.try_map(|_| Ok::<(), ()>(()), |_| Ok(()))
.expect("removing operands failed");
Some(DynamicallyResolvedValue::new(
self.query().clone(),
self.starting_component(),
field,
bare_operation,
initial_candidate,
))
}
fn edges_with_name<'a>(&'a self, name: &'a str) -> Box<dyn Iterator<Item = EdgeInfo> + 'a> {
let component = self.current_component();
let current_vid = self.current_vertex().vid;
let non_folded_edges = component
.edges
.values()
.filter(move |edge| edge.from_vid == current_vid && edge.edge_name.as_ref() == name)
.map(|edge| self.make_non_folded_edge_info(edge.as_ref()));
let folded_edges = component
.folds
.values()
.filter(move |fold| fold.from_vid == current_vid && fold.edge_name.as_ref() == name)
.map(|fold| self.make_folded_edge_info(fold.as_ref()));
Box::new(non_folded_edges.chain(folded_edges))
}
fn mandatory_edges_with_name<'a>(
&'a self,
name: &'a str,
) -> Box<dyn Iterator<Item = EdgeInfo> + 'a> {
if self.non_binding_filters() {
Box::new(std::iter::empty())
} else {
Box::new(
self.edges_with_name(name)
.filter(|edge| !edge.folded && !edge.optional && edge.recursive.is_none()),
)
}
}
fn first_mandatory_edge(&self, name: &str) -> Option<EdgeInfo> {
self.mandatory_edges_with_name(name).next()
}
fn first_edge(&self, name: &str) -> Option<EdgeInfo> {
self.edges_with_name(name).next()
}
}
fn filters_on_local_property<'a: 'b, 'b>(
vertex: &'a IRVertex,
property_name: &'b str,
) -> impl Iterator<Item = &'a Operation<LocalField, Argument>> + 'b {
vertex.filters.iter().filter(move |op| op.left().field_name.as_ref() == property_name)
}
fn compute_statically_known_candidate<'a, 'b>(
field: &'a LocalField,
relevant_filters: impl Iterator<Item = &'a Operation<LocalField, Argument>>,
query_variables: &'b BTreeMap<Arc<str>, FieldValue>,
) -> Option<CandidateValue<&'b FieldValue>> {
let is_subject_field_nullable = field.field_type.nullable;
super::filters::candidate_from_statically_evaluated_filters(
relevant_filters,
query_variables,
is_subject_field_nullable,
)
}
#[cfg(test)]
mod tests {
use std::{ops::Bound, sync::Arc};
use async_graphql_parser::types::Type;
use crate::{
interpreter::hints::{
vertex_info::compute_statically_known_candidate, CandidateValue, Range,
},
ir::{Argument, FieldValue, LocalField, Operation, VariableRef},
};
#[test]
fn exclude_not_equals_candidates() {
let first: Arc<str> = Arc::from("first");
let second: Arc<str> = Arc::from("second");
let third: Arc<str> = Arc::from("third");
let null: Arc<str> = Arc::from("null");
let list: Arc<str> = Arc::from("my_list");
let longer_list: Arc<str> = Arc::from("longer_list");
let nullable_int_type = Type::new("Int").unwrap();
let int_type = Type::new("Int!").unwrap();
let list_int_type = Type::new("[Int!]!").unwrap();
let first_var = Argument::Variable(VariableRef {
variable_name: first.clone(),
variable_type: int_type.clone(),
});
let second_var = Argument::Variable(VariableRef {
variable_name: second.clone(),
variable_type: int_type.clone(),
});
let null_var = Argument::Variable(VariableRef {
variable_name: null.clone(),
variable_type: nullable_int_type.clone(),
});
let list_var = Argument::Variable(VariableRef {
variable_name: list.clone(),
variable_type: list_int_type.clone(),
});
let longer_list_var = Argument::Variable(VariableRef {
variable_name: longer_list.clone(),
variable_type: list_int_type.clone(),
});
let local_field =
LocalField { field_name: Arc::from("my_field"), field_type: nullable_int_type.clone() };
let variables = btreemap! {
first => FieldValue::Int64(1),
second => FieldValue::Int64(2),
third => FieldValue::Int64(3),
null => FieldValue::Null,
list => FieldValue::List(Arc::new([FieldValue::Int64(1), FieldValue::Int64(2)])),
longer_list => FieldValue::List(Arc::new([FieldValue::Int64(1), FieldValue::Int64(2), FieldValue::Int64(3)])),
};
let test_data = [
// Both `= 1` and `!= 1` are impossible to satisfy simultaneously.
(
vec![
Operation::NotEquals(local_field.clone(), first_var.clone()),
Operation::Equals(local_field.clone(), first_var.clone()),
],
Some(CandidateValue::Impossible),
),
// `= 2` and `!= 1` means the value must be 2.
(
vec![
Operation::NotEquals(local_field.clone(), first_var.clone()),
Operation::Equals(local_field.clone(), second_var.clone()),
],
Some(CandidateValue::Single(&variables["second"])),
),
//
// `one_of [1, 2]` and `!= 1` allows only `2`.
(
vec![
Operation::OneOf(local_field.clone(), list_var.clone()),
Operation::NotEquals(local_field.clone(), first_var.clone()),
],
Some(CandidateValue::Single(&variables["second"])),
),
//
// `one_of [1, 2, 3]` and `not_one_of [1, 2]` allows only `3`.
(
vec![
Operation::OneOf(local_field.clone(), longer_list_var.clone()),
Operation::NotOneOf(local_field.clone(), list_var.clone()),
],
Some(CandidateValue::Single(&variables["third"])),
),
//
// `>= 2` and `not_one_of [1, 2]` produces the exclusive > 2 range
(
vec![
Operation::GreaterThanOrEqual(local_field.clone(), second_var.clone()),
Operation::NotOneOf(local_field.clone(), list_var.clone()),
],
Some(CandidateValue::Range(Range::with_start(
Bound::Excluded(&variables["second"]),
true,
))),
),
//
// `>= 2` and `is_not_null` and `not_one_of [1, 2]` produces the exclusive non-null > 2 range
(
vec![
Operation::GreaterThanOrEqual(local_field.clone(), second_var.clone()),
Operation::NotOneOf(local_field.clone(), list_var.clone()),
Operation::IsNotNull(local_field.clone()),
],
Some(CandidateValue::Range(Range::with_start(
Bound::Excluded(&variables["second"]),
false,
))),
),
//
// `> 2` and `is_not_null` produces the exclusive non-null > 2 range
(
vec![
Operation::GreaterThan(local_field.clone(), second_var.clone()),
Operation::IsNotNull(local_field.clone()),
],
Some(CandidateValue::Range(Range::with_start(
Bound::Excluded(&variables["second"]),
false,
))),
),
//
// `<= 2` and `!= 2` and `is_not_null` produces the exclusive non-null < 2 range
(
vec![
Operation::LessThanOrEqual(local_field.clone(), second_var.clone()),
Operation::NotEquals(local_field.clone(), second_var.clone()),
Operation::IsNotNull(local_field.clone()),
],
Some(CandidateValue::Range(Range::with_end(
Bound::Excluded(&variables["second"]),
false,
))),
),
//
// `< 2` and `is_not_null` produces the exclusive non-null < 2 range
(
vec![
Operation::LessThan(local_field.clone(), second_var.clone()),
Operation::IsNotNull(local_field.clone()),
],
Some(CandidateValue::Range(Range::with_end(
Bound::Excluded(&variables["second"]),
false,
))),
),
//
// `is_not_null` by itself only eliminates null
(
vec![Operation::IsNotNull(local_field.clone())],
Some(CandidateValue::Range(Range::full_non_null())),
),
//
// `!= null` also elminates null
(
vec![Operation::NotEquals(local_field.clone(), null_var.clone())],
Some(CandidateValue::Range(Range::full_non_null())),
),
//
// `!= 1` by itself doesn't produce any candidates
(vec![Operation::NotEquals(local_field.clone(), first_var.clone())], None),
//
// `not_one_of [1, 2]` by itself doesn't produce any candidates
(vec![Operation::NotEquals(local_field.clone(), list_var.clone())], None),
];
for (filters, expected_output) in test_data {
assert_eq!(
expected_output,
compute_statically_known_candidate(&local_field, filters.iter(), &variables),
"with {filters:?}",
);
}
// Explicitly drop these values, so clippy stops complaining about unneccessary clones earlier.
drop((
first_var,
second_var,
null_var,
list_var,
longer_list_var,
local_field,
int_type,
nullable_int_type,
list_int_type,
));
}
#[test]
fn use_schema_to_exclude_null_from_range() {
let first: Arc<str> = Arc::from("first");
let int_type = Type::new("Int!").unwrap();
let first_var = Argument::Variable(VariableRef {
variable_name: first.clone(),
variable_type: int_type.clone(),
});
let local_field =
LocalField { field_name: Arc::from("my_field"), field_type: int_type.clone() };
let variables = btreemap! {
first => FieldValue::Int64(1),
};
let test_data = [
// The local field is non-nullable.
// When we apply a range bound on the field, the range must be non-nullable too.
(
vec![Operation::GreaterThanOrEqual(local_field.clone(), first_var.clone())],
Some(CandidateValue::Range(Range::with_start(
Bound::Included(&variables["first"]),
false,
))),
),
(
vec![Operation::GreaterThan(local_field.clone(), first_var.clone())],
Some(CandidateValue::Range(Range::with_start(
Bound::Excluded(&variables["first"]),
false,
))),
),
(
vec![Operation::LessThan(local_field.clone(), first_var.clone())],
Some(CandidateValue::Range(Range::with_end(
Bound::Excluded(&variables["first"]),
false,
))),
),
(
vec![Operation::LessThanOrEqual(local_field.clone(), first_var.clone())],
Some(CandidateValue::Range(Range::with_end(
Bound::Included(&variables["first"]),
false,
))),
),
];
for (filters, expected_output) in test_data {
assert_eq!(
expected_output,
compute_statically_known_candidate(&local_field, filters.iter(), &variables),
"with {filters:?}",
);
}
// Explicitly drop these values, so clippy stops complaining about unneccessary clones earlier.
drop((first_var, local_field, int_type));
}
}