1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
// Copyright 2015-2016 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use std::borrow::Borrow;
use std::fmt::{self, Display};
use std::marker::PhantomData;
use std::net::SocketAddr;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use std::time::{Duration, SystemTime, UNIX_EPOCH};

use futures_util::{future::Future, stream::Stream};
use log::{debug, warn};

use crate::error::ProtoError;
use crate::op::message::NoopMessageFinalizer;
use crate::op::{MessageFinalizer, OpCode};
use crate::udp::udp_stream::{NextRandomUdpSocket, UdpSocket};
use crate::xfer::{DnsRequest, DnsRequestSender, DnsResponse, DnsResponseFuture, SerialMessage};
use crate::Time;

/// A UDP client stream of DNS binary packets
///
/// This stream will create a new UDP socket for every request. This is to avoid potential cache
///   poisoning during use by UDP based attacks.
#[must_use = "futures do nothing unless polled"]
pub struct UdpClientStream<S, MF = NoopMessageFinalizer>
where
    S: Send,
    MF: MessageFinalizer,
{
    name_server: SocketAddr,
    timeout: Duration,
    is_shutdown: bool,
    signer: Option<Arc<MF>>,
    marker: PhantomData<S>,
}

impl<S: Send> UdpClientStream<S, NoopMessageFinalizer> {
    /// it is expected that the resolver wrapper will be responsible for creating and managing
    ///  new UdpClients such that each new client would have a random port (reduce chance of cache
    ///  poisoning)
    ///
    /// # Return
    ///
    /// a tuple of a Future Stream which will handle sending and receiving messages, and a
    ///  handle which can be used to send messages into the stream.
    #[allow(clippy::new_ret_no_self)]
    pub fn new(name_server: SocketAddr) -> UdpClientConnect<S, NoopMessageFinalizer> {
        Self::with_timeout(name_server, Duration::from_secs(5))
    }

    /// Constructs a new UdpStream for a client to the specified SocketAddr.
    ///
    /// # Arguments
    ///
    /// * `name_server` - the IP and Port of the DNS server to connect to
    /// * `timeout` - connection timeout
    pub fn with_timeout(
        name_server: SocketAddr,
        timeout: Duration,
    ) -> UdpClientConnect<S, NoopMessageFinalizer> {
        Self::with_timeout_and_signer(name_server, timeout, None)
    }
}

impl<S: Send, MF: MessageFinalizer> UdpClientStream<S, MF> {
    /// Constructs a new TcpStream for a client to the specified SocketAddr.
    ///
    /// # Arguments
    ///
    /// * `name_server` - the IP and Port of the DNS server to connect to
    /// * `timeout` - connection timeout
    pub fn with_timeout_and_signer(
        name_server: SocketAddr,
        timeout: Duration,
        signer: Option<Arc<MF>>,
    ) -> UdpClientConnect<S, MF> {
        UdpClientConnect {
            name_server: Some(name_server),
            timeout,
            signer,
            marker: PhantomData::<S>,
        }
    }
}

impl<S: Send, MF: MessageFinalizer> Display for UdpClientStream<S, MF> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        write!(formatter, "UDP({})", self.name_server)
    }
}

/// creates random query_id, each socket is unique, no need for global uniqueness
fn random_query_id() -> u16 {
    use rand::distributions::{Distribution, Standard};
    let mut rand = rand::thread_rng();

    Standard.sample(&mut rand)
}

impl<S: UdpSocket + Send + 'static, MF: MessageFinalizer> DnsRequestSender
    for UdpClientStream<S, MF>
{
    fn send_message(&mut self, mut message: DnsRequest) -> DnsResponseFuture {
        if self.is_shutdown {
            panic!("can not send messages after stream is shutdown")
        }

        // associated the ID for this request, b/c this connection is unique to socket port, the ID
        //   does not need to be globally unique
        message.set_id(random_query_id());

        let now = match SystemTime::now().duration_since(UNIX_EPOCH) {
            Ok(now) => now.as_secs(),
            Err(_) => return ProtoError::from("Current time is before the Unix epoch.").into(),
        };

        // TODO: truncates u64 to u32, error on overflow?
        let now = now as u32;

        // TODO: move this logic into Message::finalize?
        if let OpCode::Update = message.op_code() {
            if let Some(ref signer) = self.signer {
                if let Err(e) = message.finalize::<MF>(signer.borrow(), now) {
                    debug!("could not sign message: {}", e);
                    return e.into();
                }
            }
        }

        let bytes = match message.to_vec() {
            Ok(bytes) => bytes,
            Err(err) => {
                return err.into();
            }
        };

        let message_id = message.id();
        let message = SerialMessage::new(bytes, self.name_server);

        S::Time::timeout::<Pin<Box<dyn Future<Output = Result<DnsResponse, ProtoError>> + Send>>>(
            self.timeout,
            Box::pin(send_serial_message::<S>(message, message_id)),
        )
        .into()
    }

    fn shutdown(&mut self) {
        self.is_shutdown = true;
    }

    fn is_shutdown(&self) -> bool {
        self.is_shutdown
    }
}

// TODO: is this impl necessary? there's nothing being driven here...
impl<S: Send, MF: MessageFinalizer> Stream for UdpClientStream<S, MF> {
    type Item = Result<(), ProtoError>;

    fn poll_next(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        // Technically the Stream doesn't actually do anything.
        if self.is_shutdown {
            Poll::Ready(None)
        } else {
            Poll::Ready(Some(Ok(())))
        }
    }
}

/// A future that resolves to an UdpClientStream
pub struct UdpClientConnect<S, MF = NoopMessageFinalizer>
where
    S: Send,
    MF: MessageFinalizer,
{
    name_server: Option<SocketAddr>,
    timeout: Duration,
    signer: Option<Arc<MF>>,
    marker: PhantomData<S>,
}

impl<S: Send + Unpin, MF: MessageFinalizer> Future for UdpClientConnect<S, MF> {
    type Output = Result<UdpClientStream<S, MF>, ProtoError>;

    fn poll(mut self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
        // TODO: this doesn't need to be a future?
        Poll::Ready(Ok(UdpClientStream::<S, MF> {
            name_server: self
                .name_server
                .take()
                .expect("UdpClientConnect invalid state: name_server"),
            is_shutdown: false,
            timeout: self.timeout,
            signer: self.signer.take(),
            marker: PhantomData,
        }))
    }
}

async fn send_serial_message<S: UdpSocket + Send>(
    msg: SerialMessage,
    msg_id: u16,
) -> Result<DnsResponse, ProtoError> {
    let name_server = msg.addr();
    let socket: S = NextRandomUdpSocket::new(&name_server).await?;
    let bytes = msg.bytes();
    let addr = msg.addr();
    let len_sent: usize = socket.send_to(bytes, addr).await?;

    if bytes.len() != len_sent {
        return Err(ProtoError::from(format!(
            "Not all bytes of message sent, {} of {}",
            len_sent,
            bytes.len()
        )));
    }

    // TODO: limit the max number of attempted messages? this relies on a timeout to die...
    loop {
        // TODO: consider making this heap based? need to verify it matches EDNS settings
        let mut recv_buf = [0u8; 2048];

        let (len, src) = socket.recv_from(&mut recv_buf).await?;
        let response = SerialMessage::new(recv_buf.iter().take(len).cloned().collect(), src);

        // compare expected src to received packet
        let request_target = msg.addr();

        if response.addr() != request_target {
            warn!(
                "ignoring response from {} because it does not match name_server: {}.",
                response.addr(),
                request_target,
            );

            // await an answer from the correct NameServer
            continue;
        }

        // TODO: match query strings from request and response?

        match response.to_message() {
            Ok(message) => {
                if msg_id == message.id() {
                    debug!("received message id: {}", message.id());
                    return Ok(DnsResponse::from(message));
                } else {
                    // on wrong id, attempted poison?
                    warn!(
                        "expected message id: {} got: {}, dropped",
                        msg_id,
                        message.id()
                    );

                    continue;
                }
            }
            Err(e) => {
                // on errors deserializing, continue
                warn!(
                    "dropped malformed message waiting for id: {} err: {}",
                    msg_id, e
                );

                continue;
            }
        }
    }
}

#[cfg(test)]
#[cfg(feature = "tokio-runtime")]
mod tests {
    #![allow(clippy::dbg_macro, clippy::print_stdout)]
    use crate::tests::udp_client_stream_test;
    use crate::TokioTime;
    #[cfg(not(target_os = "linux"))]
    use std::net::Ipv6Addr;
    use std::net::{IpAddr, Ipv4Addr};
    use tokio::{net::UdpSocket as TokioUdpSocket, runtime::Runtime};

    #[test]
    fn test_udp_client_stream_ipv4() {
        let io_loop = Runtime::new().expect("failed to create tokio runtime");
        udp_client_stream_test::<TokioUdpSocket, Runtime, TokioTime>(
            IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
            io_loop,
        )
    }

    #[test]
    #[cfg(not(target_os = "linux"))] // ignored until Travis-CI fixes IPv6
    fn test_udp_client_stream_ipv6() {
        let io_loop = Runtime::new().expect("failed to create tokio runtime");
        udp_client_stream_test::<TokioUdpSocket, Runtime, TokioTime>(
            IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)),
            io_loop,
        )
    }
}