Struct truck_topology::Vertex

source ·
pub struct Vertex<P> { /* private fields */ }
Expand description

Vertex, the minimum topological unit.

The constructor Vertex::new() creates a different vertex each time. These vertices are uniquely identified by their id.

let v0 = Vertex::new(()); // one vertex
let v1 = Vertex::new(()); // another vertex
assert_ne!(v0, v1); // two vertices are different

Implementations§

constructor

Examples
use truck_topology::*;
let v0 = Vertex::new(()); // a vertex whose geometry is the empty tuple.
let v1 = Vertex::new(()); // another vertex
let v2 = v0.clone(); // a cloned vertex
assert_ne!(v0, v1);
assert_eq!(v0, v2);
Examples found in repository?
src/vertex.rs (line 32)
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    pub fn news(points: impl AsRef<[P]>) -> Vec<Vertex<P>>
    where P: Copy {
        points.as_ref().iter().map(|p| Vertex::new(*p)).collect()
    }

    /// Returns the point of vertex.
    #[inline(always)]
    pub fn get_point(&self) -> P
    where P: Clone {
        self.point.lock().unwrap().clone()
    }

    /// Sets the point of vertex.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v0 = Vertex::new(0);
    /// let v1 = v0.clone();
    ///
    /// // Two vertices have the same content.
    /// assert_eq!(v0.get_point(), 0);
    /// assert_eq!(v1.get_point(), 0);
    ///
    /// // set point
    /// v0.set_point(1);
    ///
    /// // The contents of two vertices are synchronized.
    /// assert_eq!(v0.get_point(), 1);
    /// assert_eq!(v1.get_point(), 1);
    /// ```
    #[inline(always)]
    pub fn set_point(&self, point: P) { *self.point.lock().unwrap() = point; }

    /// Returns vertex whose point is converted by `point_mapping`.
    /// # Remarks
    /// Accessing geometry elements directly in the closure will result in a deadlock.
    /// So, this method does not appear to the document.
    #[doc(hidden)]
    #[inline(always)]
    pub fn try_mapped<Q>(
        &self,
        mut point_mapping: impl FnMut(&P) -> Option<Q>,
    ) -> Option<Vertex<Q>> {
        Some(Vertex::new(point_mapping(&*self.point.lock().unwrap())?))
    }

    /// Returns vertex whose point is converted by `point_mapping`.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v0 = Vertex::new(2);
    /// let v1 = v0.mapped(|a| *a as f64 + 0.5);
    /// assert_eq!(v1.get_point(), 2.5);
    /// ```
    /// # Remarks
    /// Accessing geometry elements directly in the closure will result in a deadlock.
    /// So, this method does not appear to the document.
    #[doc(hidden)]
    #[inline(always)]
    pub fn mapped<Q>(&self, mut point_mapping: impl FnMut(&P) -> Q) -> Vertex<Q> {
        Vertex::new(point_mapping(&*self.point.lock().unwrap()))
    }

Creates len distinct vertices and return them by vector.

Examples
use truck_topology::Vertex;
let v = Vertex::news(&[(), (), ()]);
assert_eq!(v.len(), 3);
assert_ne!(v[0], v[2]);

Returns the point of vertex.

Examples found in repository?
src/compress.rs (line 117)
113
114
115
116
117
118
119
    fn get_vid(&mut self, vertex: &Vertex<P>) -> usize {
        let id = self.vmap.len();
        self.vmap
            .entry(vertex.id())
            .or_insert_with(|| (id, vertex.get_point()))
            .0
    }
More examples
Hide additional examples
src/edge.rs (line 412)
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    pub fn cut(&self, vertex: &Vertex<P>) -> Option<(Self, Self)>
    where
        P: Clone,
        C: Cut<Point = P> + SearchParameter<D1, Point = P>, {
        let mut curve0 = self.get_curve();
        let t = curve0.search_parameter(vertex.get_point(), None, SEARCH_PARAMETER_TRIALS)?;
        let (t0, t1) = curve0.parameter_range();
        if t < t0 + TOLERANCE || t1 - TOLERANCE < t {
            return None;
        }
        let curve1 = curve0.cut(t);
        let edge0 = Edge {
            vertices: (self.absolute_front().clone(), vertex.clone()),
            orientation: self.orientation,
            curve: Arc::new(Mutex::new(curve0)),
        };
        let edge1 = Edge {
            vertices: (vertex.clone(), self.absolute_back().clone()),
            orientation: self.orientation,
            curve: Arc::new(Mutex::new(curve1)),
        };
        if self.orientation {
            Some((edge0, edge1))
        } else {
            Some((edge1, edge0))
        }
    }

    /// Cuts the edge at `vertex` with parameter `t`.
    /// # Failure
    /// Returns `None` if `!edge.get_curve().subs(t).near(&vertex.get_point())`.
    pub fn cut_with_parameter(&self, vertex: &Vertex<P>, t: f64) -> Option<(Self, Self)>
    where
        P: Clone + Tolerance,
        C: Cut<Point = P>, {
        let mut curve0 = self.get_curve();
        if !curve0.subs(t).near(&vertex.get_point()) {
            return None;
        }
        let (t0, t1) = curve0.parameter_range();
        if t < t0 + TOLERANCE || t1 - TOLERANCE < t {
            return None;
        }
        let curve1 = curve0.cut(t);
        let edge0 = Edge {
            vertices: (self.absolute_front().clone(), vertex.clone()),
            orientation: self.orientation,
            curve: Arc::new(Mutex::new(curve0)),
        };
        let edge1 = Edge {
            vertices: (vertex.clone(), self.absolute_back().clone()),
            orientation: self.orientation,
            curve: Arc::new(Mutex::new(curve1)),
        };
        if self.orientation {
            Some((edge0, edge1))
        } else {
            Some((edge1, edge0))
        }
    }

Sets the point of vertex.

Examples
use truck_topology::*;
let v0 = Vertex::new(0);
let v1 = v0.clone();

// Two vertices have the same content.
assert_eq!(v0.get_point(), 0);
assert_eq!(v1.get_point(), 0);

// set point
v0.set_point(1);

// The contents of two vertices are synchronized.
assert_eq!(v0.get_point(), 1);
assert_eq!(v1.get_point(), 1);

Returns the id of the vertex.

Examples found in repository?
src/vertex.rs (line 165)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    fn eq(&self, other: &Self) -> bool { self.id() == other.id() }
}

impl<P> Eq for Vertex<P> {}

impl<P> Hash for Vertex<P> {
    #[inline(always)]
    fn hash<H: Hasher>(&self, state: &mut H) { std::ptr::hash(Arc::as_ptr(&self.point), state); }
}

impl<'a, P: Debug> Debug for DebugDisplay<'a, Vertex<P>, VertexDisplayFormat> {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self.format {
            VertexDisplayFormat::Full => f
                .debug_struct("Vertex")
                .field("id", &Arc::as_ptr(&self.entity.point))
                .field("entity", &MutexFmt(&self.entity.point))
                .finish(),
            VertexDisplayFormat::IDTuple => {
                f.debug_tuple("Vertex").field(&self.entity.id()).finish()
            }
            VertexDisplayFormat::PointTuple => f
                .debug_tuple("Vertex")
                .field(&MutexFmt(&self.entity.point))
                .finish(),
            VertexDisplayFormat::AsPoint => {
                f.write_fmt(format_args!("{:?}", &MutexFmt(&self.entity.point)))
            }
        }
    }
More examples
Hide additional examples
src/wire.rs (line 278)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    pub fn is_simple(&self) -> bool {
        let mut set = HashSet::default();
        self.vertex_iter()
            .all(move |vertex| set.insert(vertex.id()))
    }

    /// Determines whether all the wires in `wires` has no same vertices.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    ///
    /// let v = Vertex::news(&[(), (), (), (), ()]);
    /// let edge0 = Edge::new(&v[0], &v[1], ());
    /// let edge1 = Edge::new(&v[1], &v[2], ());
    /// let edge2 = Edge::new(&v[2], &v[3], ());
    /// let edge3 = Edge::new(&v[3], &v[4], ());
    ///
    /// let wire0 = Wire::from(vec![edge0, edge1]);
    /// let wire1 = Wire::from(vec![edge2]);
    /// let wire2 = Wire::from(vec![edge3]);
    ///
    /// assert!(Wire::disjoint_wires(&[wire0.clone(), wire2]));
    /// assert!(!Wire::disjoint_wires(&[wire0, wire1]));
    /// ```
    pub fn disjoint_wires(wires: &[Wire<P, C>]) -> bool {
        let mut set = HashSet::default();
        wires.iter().all(move |wire| {
            let mut vec = Vec::new();
            let res = wire.vertex_iter().all(|v| {
                vec.push(v.id());
                !set.contains(&v.id())
            });
            set.extend(vec);
            res
        })
    }
src/compress.rs (line 116)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    fn get_vid(&mut self, vertex: &Vertex<P>) -> usize {
        let id = self.vmap.len();
        self.vmap
            .entry(vertex.id())
            .or_insert_with(|| (id, vertex.get_point()))
            .0
    }

    #[inline(always)]
    fn get_eid(&mut self, edge: &Edge<P, C>) -> CompressedEdgeIndex {
        match self.emap.get(&edge.id()) {
            Some(got) => (got.0, edge.orientation()).into(),
            None => {
                let id = self.emap.len();
                let front_id = self.get_vid(edge.absolute_front());
                let back_id = self.get_vid(edge.absolute_back());
                let curve = edge.get_curve();
                let cedge = CompressedEdge {
                    vertices: (front_id, back_id),
                    curve,
                };
                self.emap.insert(edge.id(), (id, cedge));
                (id, edge.orientation()).into()
            }
        }
    }

    #[inline(always)]
    fn create_boundary(&mut self, boundary: &Wire<P, C>) -> Vec<CompressedEdgeIndex> {
        boundary.iter().map(|edge| self.get_eid(edge)).collect()
    }

    #[inline(always)]
    fn create_cface<S: Clone>(&mut self, face: &Face<P, C, S>) -> CompressedFace<S> {
        CompressedFace {
            boundaries: face
                .boundaries
                .iter()
                .map(|wire| self.create_boundary(wire))
                .collect(),
            orientation: face.orientation(),
            surface: face.get_surface(),
        }
    }

    #[inline(always)]
    fn map2vec<K, T>(map: HashMap<K, (usize, T)>) -> Vec<T> {
        let mut vec: Vec<_> = map.into_iter().map(|entry| entry.1).collect();
        vec.sort_by(|x, y| x.0.cmp(&y.0));
        vec.into_iter().map(|x| x.1).collect()
    }

    #[inline(always)]
    fn vertices_edges(self) -> (Vec<P>, Vec<CompressedEdge<C>>) {
        (Self::map2vec(self.vmap), Self::map2vec(self.emap))
    }
}

impl<P: Clone, C: Clone, S: Clone> Shell<P, C, S> {
    /// Compresses the shell into the serialized compressed shell.
    pub fn compress(&self) -> CompressedShell<P, C, S> {
        let mut director = CompressDirector::new();
        let mut face_closure = |face: &Face<P, C, S>| director.create_cface(face);
        let faces = self.iter().map(&mut face_closure).collect();
        let (vertices, edges) = director.vertices_edges();
        CompressedShell {
            vertices,
            edges,
            faces,
        }
    }

    /// Extracts the serialized compressed shell into the shell.
    pub fn extract(cshell: CompressedShell<P, C, S>) -> Result<Self> {
        let CompressedShell {
            vertices,
            edges,
            faces,
        } = cshell;
        let vertices: Vec<_> = vertices.into_iter().map(Vertex::new).collect();
        let edges = edges
            .into_iter()
            .map(move |edge| edge.create_edge(&vertices))
            .collect::<Result<Vec<_>>>()?;
        faces
            .into_iter()
            .map(move |face| face.create_face(&edges))
            .collect()
    }
}

impl<P: Clone, C: Clone, S: Clone> Solid<P, C, S> {
    /// Compresses the solid into the serialized compressed solid.
    pub fn compress(&self) -> CompressedSolid<P, C, S> {
        CompressedSolid {
            boundaries: self
                .boundaries()
                .iter()
                .map(|shell| shell.compress())
                .collect(),
        }
    }

    /// Extracts the serialized compressed shell into the shell.
    pub fn extract(csolid: CompressedSolid<P, C, S>) -> Result<Self> {
        let shells: Result<Vec<Shell<P, C, S>>> =
            csolid.boundaries.into_iter().map(Shell::extract).collect();
        Solid::try_new(shells?)
    }
}

// -------------------------- test -------------------------- //

#[test]
fn compress_extract() {
    let cube = solid::cube();
    let shell0 = &cube.boundaries()[0];
    let shell1 = Shell::extract(shell0.compress()).unwrap();
    assert!(same_topology(shell0, &shell1));
}

#[allow(dead_code)]
fn vmap_subroutin<P, Q>(
    v0: &Vertex<P>,
    v1: &Vertex<Q>,
    vmap: &mut HashMap<VertexID<P>, VertexID<Q>>,
) -> bool {
    match vmap.get(&v0.id()) {
        Some(got) => *got == v1.id(),
        None => {
            vmap.insert(v0.id(), v1.id());
            true
        }
    }
}
src/shell.rs (line 156)
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
    pub fn extract_boundaries(&self) -> Vec<Wire<P, C>> {
        let boundaries: Boundaries<C> = self.edge_iter().collect();
        let mut vemap: HashMap<_, _> = self
            .edge_iter()
            .filter_map(|edge| {
                boundaries
                    .boundaries
                    .get(&edge.id())
                    .map(|_| (edge.front().id(), edge.clone()))
            })
            .collect();
        let mut res = Vec::new();
        while let Some(edge) = vemap.values().next() {
            if let Some(mut cursor) = vemap.remove(&edge.front().id()) {
                let mut wire = Wire::from(vec![cursor.clone()]);
                loop {
                    cursor = match vemap.remove(&cursor.back().id()) {
                        None => break,
                        Some(got) => {
                            wire.push_back(got.clone());
                            got.clone()
                        }
                    };
                }
                res.push(wire);
            }
        }
        res
    }

    /// Returns the adjacency matrix of vertices in the shell.
    ///
    /// For the returned hashmap `map` and each vertex `v`,
    /// the vector `map[&v]` cosists all vertices which is adjacent to `v`.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use std::collections::HashSet;
    /// let v = Vertex::news(&[(); 4]);
    /// let edge = [
    ///     Edge::new(&v[0], &v[2], ()),
    ///     Edge::new(&v[0], &v[3], ()),
    ///     Edge::new(&v[1], &v[2], ()),
    ///     Edge::new(&v[1], &v[3], ()),
    ///     Edge::new(&v[2], &v[3], ()),
    /// ];
    /// let wire = vec![
    ///     Wire::from_iter(vec![&edge[0], &edge[4], &edge[1].inverse()]),
    ///     Wire::from_iter(vec![&edge[2], &edge[4], &edge[3].inverse()]),
    /// ];
    /// let shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// let adjacency = shell.vertex_adjacency();
    /// let v0_ads_vec = adjacency.get(&v[0].id()).unwrap();
    /// let v0_ads: HashSet<&VertexID<()>> = HashSet::from_iter(v0_ads_vec);
    /// assert_eq!(v0_ads, HashSet::from_iter(vec![&v[2].id(), &v[3].id()]));
    /// ```
    pub fn vertex_adjacency(&self) -> HashMap<VertexID<P>, Vec<VertexID<P>>> {
        let mut adjacency = EntryMap::new(|x| x, |_| Vec::new());
        let mut done_edge: HashSet<EdgeID<C>> = HashSet::default();
        self.edge_iter().for_each(|edge| {
            if done_edge.insert(edge.id()) {
                let v0 = edge.front().id();
                let v1 = edge.back().id();
                adjacency.entry_or_insert(v0).push(v1);
                adjacency.entry_or_insert(v1).push(v0);
            }
        });
        adjacency.into()
    }

    /// Returns the adjacency matrix of faces in the shell.
    ///
    /// For the returned hashmap `map` and each face `face`,
    /// the vector `map[&face]` consists all faces adjacent to `face`.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// use truck_topology::shell::ShellCondition;
    /// let v = Vertex::news(&[(); 6]);
    /// let edge = [
    ///     Edge::new(&v[0], &v[1], ()),
    ///     Edge::new(&v[0], &v[2], ()),
    ///     Edge::new(&v[1], &v[2], ()),
    ///     Edge::new(&v[1], &v[3], ()),
    ///     Edge::new(&v[1], &v[4], ()),
    ///     Edge::new(&v[2], &v[4], ()),
    ///     Edge::new(&v[2], &v[5], ()),
    ///     Edge::new(&v[3], &v[4], ()),
    ///     Edge::new(&v[4], &v[5], ()),
    /// ];
    /// let wire = vec![
    ///     Wire::from_iter(vec![&edge[0], &edge[2], &edge[1].inverse()]),
    ///     Wire::from_iter(vec![&edge[3], &edge[7], &edge[4].inverse()]),
    ///     Wire::from_iter(vec![&edge[5], &edge[8], &edge[6].inverse()]),
    ///     Wire::from_iter(vec![&edge[2].inverse(), &edge[4], &edge[5].inverse()]),
    /// ];
    /// let shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// let face_adjacency = shell.face_adjacency();
    /// assert_eq!(face_adjacency[&shell[0]].len(), 1);
    /// assert_eq!(face_adjacency[&shell[1]].len(), 1);
    /// assert_eq!(face_adjacency[&shell[2]].len(), 1);
    /// assert_eq!(face_adjacency[&shell[3]].len(), 3);
    /// ```
    pub fn face_adjacency(&self) -> FaceAdjacencyMap<'_, P, C, S> {
        let mut adjacency = EntryMap::new(|x| x, |_| Vec::new());
        let mut edge_face_map = EntryMap::new(|x| x, |_| Vec::new());
        self.face_iter().for_each(|face| {
            face.absolute_boundaries()
                .iter()
                .flatten()
                .for_each(|edge| {
                    let vec = edge_face_map.entry_or_insert(edge.id());
                    adjacency.entry_or_insert(face).extend(vec.iter().copied());
                    vec.iter().for_each(|tmp| {
                        adjacency.entry_or_insert(*tmp).push(face);
                    });
                    vec.push(face);
                });
        });
        adjacency.into()
    }

    /// Returns whether the shell is connected or not.
    /// # Examples
    /// ```
    /// // The empty shell is connected.
    /// use truck_topology::*;
    /// assert!(Shell::<(), (), ()>::new().is_connected());
    /// ```
    /// ```
    /// // An example of a connected shell
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(); 4]);
    /// let shared_edge = Edge::new(&v[1], &v[2], ());
    /// let wire0 = Wire::from_iter(vec![
    ///     &Edge::new(&v[0], &v[1], ()),
    ///     &shared_edge,
    ///     &Edge::new(&v[2], &v[0], ()),
    /// ]);
    /// let face0 = Face::new(vec![wire0], ());
    /// let wire1 = Wire::from_iter(vec![
    ///     &Edge::new(&v[3], &v[1], ()),
    ///     &shared_edge,
    ///     &Edge::new(&v[2], &v[3], ()),
    /// ]);
    /// let face1 = Face::new(vec![wire1], ());
    /// let shell: Shell<_, _, _> = vec![face0, face1].into();
    /// assert!(shell.is_connected());
    /// ```
    /// ```
    /// // An example of a non-connected shell
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(); 6]);
    /// let wire0 = Wire::from_iter(vec![
    ///     Edge::new(&v[0], &v[1], ()),
    ///     Edge::new(&v[1], &v[2], ()),
    ///     Edge::new(&v[2], &v[0], ())
    /// ]);
    /// let face0 = Face::new(vec![wire0], ());
    /// let wire1 = Wire::from_iter(vec![
    ///     &Edge::new(&v[3], &v[4], ()),
    ///     &Edge::new(&v[4], &v[5], ()),
    ///     &Edge::new(&v[5], &v[3], ())
    /// ]);
    /// let face1 = Face::new(vec![wire1], ());
    /// let shell: Shell<_, _, _> = vec![face0, face1].into();
    /// assert!(!shell.is_connected());
    /// ```
    pub fn is_connected(&self) -> bool {
        let mut adjacency = self.vertex_adjacency();
        // Connecting another boundary of the same face with an edge
        for face in self {
            for wire in face.boundaries.windows(2) {
                let v0 = wire[0].front_vertex().unwrap();
                let v1 = wire[1].front_vertex().unwrap();
                adjacency.get_mut(&v0.id()).unwrap().push(v1.id());
                adjacency.get_mut(&v1.id()).unwrap().push(v0.id());
            }
        }
        check_connectivity(&mut adjacency)
    }

    /// Returns a vector consisting of shells of each connected components.
    /// # Examples
    /// ```
    /// use truck_topology::Shell;
    /// // The empty shell has no connected component.
    /// assert!(Shell::<(), (), ()>::new().connected_components().is_empty());
    /// ```
    /// # Remarks
    /// Since this method uses the face adjacency matrix, multiple components
    /// are perhaps generated even if the shell is connected. In that case,
    /// there is a pair of faces such that share vertices but not edges.
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[(); 5]);
    /// let wire0 = Wire::from_iter(vec![
    ///     Edge::new(&v[0], &v[1], ()),
    ///     Edge::new(&v[1], &v[2], ()),
    ///     Edge::new(&v[2], &v[0], ()),
    /// ]);
    /// let wire1 = Wire::from_iter(vec![
    ///     Edge::new(&v[0], &v[3], ()),
    ///     Edge::new(&v[3], &v[4], ()),
    ///     Edge::new(&v[4], &v[0], ()),
    /// ]);
    /// let shell = Shell::from(vec![
    ///     Face::new(vec![wire0], ()),
    ///     Face::new(vec![wire1], ()),
    /// ]);
    /// assert!(shell.is_connected());
    /// assert_eq!(shell.connected_components().len(), 2);
    /// ```
    pub fn connected_components(&self) -> Vec<Shell<P, C, S>> {
        let mut adjacency = self.face_adjacency();
        let components = create_components(&mut adjacency);
        components
            .into_iter()
            .map(|vec| vec.into_iter().cloned().collect())
            .collect()
    }

    /// Returns the vector of all singular vertices.
    ///
    /// Here, we say that a vertex is singular if, for a sufficiently small neighborhood U of
    /// the vertex, the set U - {the vertex} is not connected.
    ///
    /// A regular, oriented, or closed shell becomes a manifold if and only if the shell has
    /// no singular vertices.
    /// # Examples
    /// ```
    /// // A regular manifold: Mobius bundle
    /// use truck_topology::*;
    /// use truck_topology::shell::ShellCondition;
    ///
    /// let v = Vertex::news(&[(), (), (), ()]);
    /// let edge = [
    ///     Edge::new(&v[0], &v[1], ()),
    ///     Edge::new(&v[1], &v[2], ()),
    ///     Edge::new(&v[2], &v[0], ()),
    ///     Edge::new(&v[1], &v[3], ()),
    ///     Edge::new(&v[3], &v[2], ()),
    ///     Edge::new(&v[0], &v[3], ()),
    /// ];
    /// let wire = vec![
    ///     Wire::from_iter(vec![&edge[0], &edge[3], &edge[4], &edge[2]]),
    ///     Wire::from_iter(vec![&edge[1], &edge[2], &edge[5], &edge[3].inverse()]),
    /// ];
    /// let shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// assert_eq!(shell.shell_condition(), ShellCondition::Regular);
    /// assert!(shell.singular_vertices().is_empty());
    /// ```
    /// ```
    /// // A closed and connected shell which has a singular vertex.
    /// use truck_topology::*;
    /// use truck_topology::shell::*;
    ///
    /// let v = Vertex::news(&[(); 7]);
    /// let edge = [
    ///     Edge::new(&v[0], &v[1], ()), // 0
    ///     Edge::new(&v[0], &v[2], ()), // 1
    ///     Edge::new(&v[0], &v[3], ()), // 2
    ///     Edge::new(&v[1], &v[2], ()), // 3
    ///     Edge::new(&v[2], &v[3], ()), // 4
    ///     Edge::new(&v[3], &v[1], ()), // 5
    ///     Edge::new(&v[0], &v[4], ()), // 6
    ///     Edge::new(&v[0], &v[5], ()), // 7
    ///     Edge::new(&v[0], &v[6], ()), // 8
    ///     Edge::new(&v[4], &v[5], ()), // 9
    ///     Edge::new(&v[5], &v[6], ()), // 10
    ///     Edge::new(&v[6], &v[4], ()), // 11
    /// ];
    /// let wire = vec![
    ///     Wire::from_iter(vec![&edge[0].inverse(), &edge[1], &edge[3].inverse()]),
    ///     Wire::from_iter(vec![&edge[1].inverse(), &edge[2], &edge[4].inverse()]),
    ///     Wire::from_iter(vec![&edge[2].inverse(), &edge[0], &edge[5].inverse()]),
    ///     Wire::from_iter(vec![&edge[3], &edge[4], &edge[5]]),
    ///     Wire::from_iter(vec![&edge[6].inverse(), &edge[7], &edge[9].inverse()]),
    ///     Wire::from_iter(vec![&edge[7].inverse(), &edge[8], &edge[10].inverse()]),
    ///     Wire::from_iter(vec![&edge[8].inverse(), &edge[6], &edge[11].inverse()]),
    ///     Wire::from_iter(vec![&edge[9], &edge[10], &edge[11]]),
    /// ];
    /// let shell: Shell<_, _, _> = wire.into_iter().map(|w| Face::new(vec![w], ())).collect();
    /// assert_eq!(shell.shell_condition(), ShellCondition::Closed);
    /// assert!(shell.is_connected());
    /// assert_eq!(shell.singular_vertices(), vec![v[0].clone()]);
    /// ```
    pub fn singular_vertices(&self) -> Vec<Vertex<P>> {
        let mut vert_wise_adjacency =
            EntryMap::new(Vertex::clone, |_| EntryMap::new(Edge::id, |_| Vec::new()));
        self.face_iter()
            .flat_map(Face::absolute_boundaries)
            .for_each(|wire| {
                let first_edge = &wire[0];
                let mut edge_iter = wire.iter().peekable();
                while let Some(edge) = edge_iter.next() {
                    let adjacency = vert_wise_adjacency.entry_or_insert(edge.back());
                    let next_edge = *edge_iter.peek().unwrap_or(&first_edge);
                    adjacency.entry_or_insert(edge).push(next_edge.id());
                    adjacency.entry_or_insert(next_edge).push(edge.id());
                }
            });
        vert_wise_adjacency
            .into_iter()
            .filter_map(|(vertex, adjacency)| {
                Some(vertex).filter(|_| !check_connectivity(&mut adjacency.into()))
            })
            .collect()
    }

    /// Returns a new shell whose surfaces are mapped by `surface_mapping`,
    /// curves are mapped by `curve_mapping` and points are mapped by `point_mapping`.
    /// # Remarks
    /// Accessing geometry elements directly in the closure will result in a deadlock.
    /// So, this method does not appear to the document.
    #[doc(hidden)]
    pub fn try_mapped<Q, D, T>(
        &self,
        mut point_mapping: impl FnMut(&P) -> Option<Q>,
        mut curve_mapping: impl FnMut(&C) -> Option<D>,
        mut surface_mapping: impl FnMut(&S) -> Option<T>,
    ) -> Option<Shell<Q, D, T>> {
        let mut vertex_map = EntryMap::new(Vertex::id, move |v| v.try_mapped(&mut point_mapping));
        let mut edge_map = EntryMap::new(
            Edge::id,
            wire::edge_entry_map_try_closure(&mut vertex_map, &mut curve_mapping),
        );
        self.face_iter()
            .map(|face| {
                let wires = face
                    .absolute_boundaries()
                    .iter()
                    .map(|wire| wire.sub_try_mapped(&mut edge_map))
                    .collect::<Option<Vec<_>>>()?;
                let surface = surface_mapping(&*face.surface.lock().unwrap())?;
                let mut new_face = Face::debug_new(wires, surface);
                if !face.orientation() {
                    new_face.invert();
                }
                Some(new_face)
            })
            .collect()
    }

    /// Returns a new shell whose surfaces are mapped by `surface_mapping`,
    /// curves are mapped by `curve_mapping` and points are mapped by `point_mapping`.
    /// # Examples
    /// ```
    /// use truck_topology::*;
    /// let v = Vertex::news(&[0, 1, 2, 3, 4, 5, 6]);
    /// let wire0 = Wire::from(vec![
    ///     Edge::new(&v[0], &v[1], 100),
    ///     Edge::new(&v[1], &v[2], 200),
    ///     Edge::new(&v[2], &v[3], 300),
    ///     Edge::new(&v[3], &v[0], 400),
    /// ]);
    /// let wire1 = Wire::from(vec![
    ///     Edge::new(&v[4], &v[5], 500),
    ///     Edge::new(&v[6], &v[5], 600).inverse(),
    ///     Edge::new(&v[6], &v[4], 700),
    /// ]);
    /// let face0 = Face::new(vec![wire0, wire1], 10000);
    /// let face1 = face0.mapped(
    ///     &move |i: &usize| *i + 7,
    ///     &move |j: &usize| *j + 700,
    ///     &move |k: &usize| *k + 10000,
    /// );
    /// let shell0 = Shell::from(vec![face0, face1.inverse()]);
    /// let shell1 = shell0.mapped(
    ///     &move |i: &usize| *i + 50,
    ///     &move |j: &usize| *j + 5000,
    ///     &move |k: &usize| *k + 500000,
    /// );
    /// # for face in shell1.face_iter() {
    /// #    for bdry in face.absolute_boundaries() {
    /// #        assert!(bdry.is_closed());
    /// #        assert!(bdry.is_simple());
    /// #    }
    /// # }
    ///
    /// for (face0, face1) in shell0.face_iter().zip(shell1.face_iter()) {
    ///     assert_eq!(
    ///         face0.get_surface() + 500000,
    ///         face1.get_surface(),
    ///     );
    ///     assert_eq!(face0.orientation(), face1.orientation());
    ///     let biters0 = face0.boundary_iters();
    ///     let biters1 = face1.boundary_iters();
    ///     for (biter0, biter1) in biters0.into_iter().zip(biters1) {
    ///         for (edge0, edge1) in biter0.zip(biter1) {
    ///             assert_eq!(
    ///                 edge0.front().get_point() + 50,
    ///                 edge1.front().get_point(),
    ///             );
    ///             assert_eq!(
    ///                 edge0.back().get_point() + 50,
    ///                 edge1.back().get_point(),
    ///             );
    ///             assert_eq!(
    ///                 edge0.get_curve() + 5000,
    ///                 edge1.get_curve(),
    ///             );
    ///         }
    ///     }
    /// }
    /// ```
    /// # Remarks
    /// Accessing geometry elements directly in the closure will result in a deadlock.
    /// So, this method does not appear to the document.
    #[doc(hidden)]
    pub fn mapped<Q, D, T>(
        &self,
        mut point_mapping: impl FnMut(&P) -> Q,
        mut curve_mapping: impl FnMut(&C) -> D,
        mut surface_mapping: impl FnMut(&S) -> T,
    ) -> Shell<Q, D, T> {
        let mut vertex_map = EntryMap::new(Vertex::id, |v| v.mapped(&mut point_mapping));
        let mut edge_map = EntryMap::new(
            Edge::id,
            wire::edge_entry_map_closure(&mut vertex_map, &mut curve_mapping),
        );
        self.face_iter()
            .map(|face| {
                let wires: Vec<Wire<_, _>> = face
                    .absolute_boundaries()
                    .iter()
                    .map(|wire| wire.sub_mapped(&mut edge_map))
                    .collect();
                let surface = surface_mapping(&*face.surface.lock().unwrap());
                let mut new_face = Face::debug_new(wires, surface);
                if !face.orientation() {
                    new_face.invert();
                }
                new_face
            })
            .collect()
    }

    /// Returns the consistence of the geometry of end vertices
    /// and the geometry of edge.
    #[inline(always)]
    pub fn is_geometric_consistent(&self) -> bool
    where
        P: Tolerance,
        C: BoundedCurve<Point = P>,
        S: IncludeCurve<C>, {
        self.iter().all(|face| face.is_geometric_consistent())
    }

    /// Cuts one edge into two edges at vertex.
    ///
    /// # Returns
    /// Returns the tuple of new edges created by cutting the edge.
    ///
    /// # Failures
    /// Returns `None` and not edit `self` if:
    /// - there is no edge corresponding to `edge_id` in the shell,
    /// - `vertex` is already included in the shell, or
    /// - cutting of edge fails.
    pub fn cut_edge(
        &mut self,
        edge_id: EdgeID<C>,
        vertex: &Vertex<P>,
    ) -> Option<(Edge<P, C>, Edge<P, C>)>
    where
        P: Clone,
        C: Cut<Point = P> + SearchParameter<D1, Point = P>,
    {
        if self.vertex_iter().any(|v| &v == vertex) {
            return None;
        }
        let mut edges = None;
        self.iter_mut()
            .flat_map(|face| face.boundaries.iter_mut())
            .try_for_each(|wire| {
                let find_res = wire
                    .iter()
                    .enumerate()
                    .find(|(_, edge)| edge.id() == edge_id);
                let (idx, edge) = match find_res {
                    Some(got) => got,
                    None => return Some(()),
                };
                if edges.is_none() {
                    edges = Some(edge.absolute_clone().cut(vertex)?);
                }
                let edges = edges.as_ref().unwrap();
                let new_wire = match edge.orientation() {
                    true => Wire::from(vec![edges.0.clone(), edges.1.clone()]),
                    false => Wire::from(vec![edges.1.inverse(), edges.0.inverse()]),
                };
                let flag = wire.swap_edge_into_wire(idx, new_wire);
                debug_assert!(flag);
                Some(())
            });
        edges
    }
    /// Removes `vertex` from `self` by concat two edges on both sides.
    ///
    /// # Returns
    /// Returns the new created edge.
    ///
    /// # Failures
    /// Returns `None` if:
    /// - there are no vertex corresponding to `vertex_id` in the shell,
    /// - the vertex is included more than 2 face boundaries,
    /// - the vertex is included more than 2 edges, or
    /// - concating edges is failed.
    pub fn remove_vertex_by_concat_edges(&mut self, vertex_id: VertexID<P>) -> Option<Edge<P, C>>
    where
        P: Debug,
        C: Concat<C, Point = P, Output = C> + Invertible + ParameterTransform, {
        let mut vec: Vec<(&mut Wire<P, C>, usize)> = self
            .face_iter_mut()
            .flat_map(|face| &mut face.boundaries)
            .filter_map(|wire| {
                let idx = wire
                    .edge_iter()
                    .enumerate()
                    .find(|(_, e)| e.back().id() == vertex_id)?
                    .0;
                Some((wire, idx))
            })
            .collect();
        if vec.len() > 2 || vec.is_empty() {
            None
        } else if vec.len() == 1 {
            let (wire, idx) = vec.pop().unwrap();
            let edge = wire[idx].concat(&wire[(idx + 1) % wire.len()]).ok()?;
            wire.swap_subwire_into_edges(idx, edge.clone());
            Some(edge)
        } else {
            let (wire0, idx0) = vec.pop().unwrap();
            let (wire1, idx1) = vec.pop().unwrap();
            if !wire0[idx0].is_same(&wire1[(idx1 + 1) % wire1.len()])
                || !wire0[(idx0 + 1) % wire0.len()].is_same(&wire1[idx1])
            {
                return None;
            }
            let edge = wire0[idx0].concat(&wire0[(idx0 + 1) % wire0.len()]).ok()?;
            wire1.swap_subwire_into_edges(idx1, edge.inverse());
            wire0.swap_subwire_into_edges(idx0, edge.clone());
            Some(edge)
        }
    }
src/face.rs (line 854)
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
    pub fn glue_at_boundaries(&self, other: &Self) -> Option<Self>
    where
        S: Clone + PartialEq,
        Wire<P, C>: Debug, {
        let surface = self.get_surface();
        if surface != other.get_surface() || self.orientation() != other.orientation() {
            return None;
        }
        let mut vemap: HashMap<VertexID<P>, &Edge<P, C>> = self
            .absolute_boundaries()
            .iter()
            .flatten()
            .map(|edge| (edge.front().id(), edge))
            .collect();
        other
            .absolute_boundaries()
            .iter()
            .flatten()
            .try_for_each(|edge| {
                if let Some(edge0) = vemap.get(&edge.back().id()) {
                    if edge.front() == edge0.back() {
                        if edge.is_same(edge0) {
                            vemap.remove(&edge.back().id());
                            return Some(());
                        } else {
                            return None;
                        }
                    }
                }
                vemap.insert(edge.front().id(), edge);
                Some(())
            })?;
        if vemap.is_empty() {
            return None;
        }
        let mut boundaries = Vec::new();
        while !vemap.is_empty() {
            let mut wire = Wire::new();
            let v = *vemap.iter().next().unwrap().0;
            let mut edge = vemap.remove(&v).unwrap();
            wire.push_back(edge.clone());
            while let Some(edge0) = vemap.remove(&edge.back().id()) {
                wire.push_back(edge0.clone());
                edge = edge0;
            }
            boundaries.push(wire);
        }
        debug_assert!(Face::try_new(boundaries.clone(), ()).is_ok());
        Some(Face {
            boundaries,
            orientation: self.orientation(),
            surface: Arc::new(Mutex::new(surface)),
        })
    }

Returns how many same vertices.

Examples
use truck_topology::*;
// Create one vertex
let v0 = Vertex::new(());
assert_eq!(v0.count(), 1);
// Create another vertex, independent from v0
let v1 = Vertex::new(());
assert_eq!(v0.count(), 1);
// Clone v0, count will be 2
let v2 = v0.clone();
assert_eq!(v0.count(), 2);
assert_eq!(v2.count(), 2);
// drop v2, count will be 1
drop(v2);
assert_eq!(v0.count(), 1);

Create display struct for debugging the vertex.

Examples
use truck_topology::*;
use VertexDisplayFormat as VDF;
let v = Vertex::new([0, 2]);
assert_eq!(
    format!("{:?}", v.display(VDF::Full)),
    format!("Vertex {{ id: {:?}, entity: [0, 2] }}", v.id()),
);
assert_eq!(
    format!("{:?}", v.display(VDF::IDTuple)),
    format!("Vertex({:?})", v.id()),
);
assert_eq!(
    &format!("{:?}", v.display(VDF::PointTuple)),
    "Vertex([0, 2])",
);
assert_eq!(
    &format!("{:?}", v.display(VDF::AsPoint)),
    "[0, 2]",
);
Examples found in repository?
src/wire.rs (line 804)
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self.format {
            WireDisplayFormat::EdgesListTuple { edge_format } => f
                .debug_tuple("Wire")
                .field(&Self {
                    entity: self.entity,
                    format: WireDisplayFormat::EdgesList { edge_format },
                })
                .finish(),
            WireDisplayFormat::EdgesList { edge_format } => f
                .debug_list()
                .entries(
                    self.entity
                        .edge_iter()
                        .map(|edge| edge.display(edge_format)),
                )
                .finish(),
            WireDisplayFormat::VerticesList { vertex_format } => {
                let vertices: Vec<_> = self.entity.vertex_iter().collect();
                f.debug_list()
                    .entries(vertices.iter().map(|vertex| vertex.display(vertex_format)))
                    .finish()
            }
        }
    }
More examples
Hide additional examples
src/edge.rs (line 592)
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self.format {
            EdgeDisplayFormat::Full { vertex_format } => f
                .debug_struct("Edge")
                .field("id", &Arc::as_ptr(&self.entity.curve))
                .field(
                    "vertices",
                    &(
                        self.entity.front().display(vertex_format),
                        self.entity.back().display(vertex_format),
                    ),
                )
                .field("entity", &MutexFmt(&self.entity.curve))
                .finish(),
            EdgeDisplayFormat::VerticesTupleAndID { vertex_format } => f
                .debug_struct("Edge")
                .field("id", &self.entity.id())
                .field(
                    "vertices",
                    &(
                        self.entity.front().display(vertex_format),
                        self.entity.back().display(vertex_format),
                    ),
                )
                .finish(),
            EdgeDisplayFormat::VerticesTupleAndCurve { vertex_format } => f
                .debug_struct("Edge")
                .field(
                    "vertices",
                    &(
                        self.entity.front().display(vertex_format),
                        self.entity.back().display(vertex_format),
                    ),
                )
                .field("entity", &MutexFmt(&self.entity.curve))
                .finish(),
            EdgeDisplayFormat::VerticesTupleStruct { vertex_format } => f
                .debug_tuple("Edge")
                .field(&self.entity.front().display(vertex_format))
                .field(&self.entity.back().display(vertex_format))
                .finish(),
            EdgeDisplayFormat::VerticesTuple { vertex_format } => f.write_fmt(format_args!(
                "({:?}, {:?})",
                self.entity.front().display(vertex_format),
                self.entity.back().display(vertex_format),
            )),
            EdgeDisplayFormat::AsCurve => {
                f.write_fmt(format_args!("{:?}", &MutexFmt(&self.entity.curve)))
            }
        }
    }

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The alignment of pointer.
The type for initializers.
Initializes a with the given initializer. Read more
Dereferences the given pointer. Read more
Mutably dereferences the given pointer. Read more
Drops the object pointed to by the given pointer. Read more
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.