Skip to main content

trtx_sys/
lib.rs

1//! Raw FFI bindings to NVIDIA TensorRT-RTX using autocxx
2//!
3//! ⚠️ **EXPERIMENTAL - NOT FOR PRODUCTION USE**
4//!
5//! This crate is in early experimental development. The API is unstable and will change.
6//! This is NOT production-ready software. Use at your own risk.
7//!
8//! This crate provides low-level, unsafe bindings to the TensorRT-RTX C++ library.
9//! For safe, ergonomic Rust API, use the `trtx` crate instead.
10//!
11//! # Architecture
12//!
13//! This crate uses a hybrid approach:
14//! - **autocxx** for direct C++ bindings to TensorRT classes
15//! - **Minimal C wrapper** for Logger callbacks (virtual methods)
16//!
17//! # Safety
18//!
19//! All functions in this crate are `unsafe` as they directly call into C++ code
20//! and perform no safety checks. Callers must ensure:
21//!
22//! - Pointers are valid and properly aligned
23//! - Lifetimes are managed correctly
24//! - Thread safety requirements are met
25//! - CUDA context is properly initialized
26
27#![allow(non_upper_case_globals)]
28#![allow(non_camel_case_types)]
29#![allow(non_snake_case)]
30#![allow(clippy::all)]
31
32// Mock mode uses old-style bindings
33#[cfg(feature = "mock")]
34include!(concat!(env!("OUT_DIR"), "/bindings.rs"));
35
36// Real mode uses autocxx
37#[cfg(not(feature = "mock"))]
38pub mod real_bindings {
39    use autocxx::prelude::*;
40
41    include_cpp! {
42        #include "NvInfer.h"
43        #include "NvOnnxParser.h"
44
45        safety!(unsafe_ffi)
46
47        // Core TensorRT types
48        generate!("nvinfer1::IBuilder")
49        generate!("nvinfer1::IBuilderConfig")
50        generate!("nvinfer1::INetworkDefinition")
51        generate!("nvinfer1::ITensor")
52        generate!("nvinfer1::ILayer")
53
54        // Derived layer types - for inheritance support
55        generate!("nvinfer1::IActivationLayer")
56        generate!("nvinfer1::IConvolutionLayer")
57        generate!("nvinfer1::IPoolingLayer")
58        generate!("nvinfer1::IElementWiseLayer")
59        generate!("nvinfer1::IShuffleLayer")
60        generate!("nvinfer1::IConcatenationLayer")
61        generate!("nvinfer1::IMatrixMultiplyLayer")
62        generate!("nvinfer1::IConstantLayer")
63        generate!("nvinfer1::ISoftMaxLayer")
64        generate!("nvinfer1::IScaleLayer")
65        generate!("nvinfer1::IReduceLayer")
66        generate!("nvinfer1::ISliceLayer")
67        generate!("nvinfer1::IResizeLayer")
68        generate!("nvinfer1::ITopKLayer")
69        generate!("nvinfer1::IGatherLayer")
70        generate!("nvinfer1::IScatterLayer")
71        generate!("nvinfer1::ISelectLayer")
72        generate!("nvinfer1::IUnaryLayer")
73        generate!("nvinfer1::IIdentityLayer")
74        generate!("nvinfer1::IPaddingLayer")
75        generate!("nvinfer1::ICastLayer")
76        generate!("nvinfer1::IDeconvolutionLayer")
77        generate!("nvinfer1::IQuantizeLayer")
78        generate!("nvinfer1::IDequantizeLayer")
79        generate!("nvinfer1::IAssertionLayer")
80        generate!("nvinfer1::ICumulativeLayer")
81        generate!("nvinfer1::ILoop")
82        generate!("nvinfer1::IIfConditional")
83        // NOTE: IRNNv2Layer is deprecated (TRT_DEPRECATED) and autocxx cannot generate bindings for it
84        // RNN operations (lstm, lstmCell, gru, gruCell) remain deferred until we can work around this
85        // generate!("nvinfer1::IRNNv2Layer")
86
87        generate!("nvinfer1::IRuntime")
88        generate!("nvinfer1::ICudaEngine")
89        generate!("nvinfer1::IExecutionContext")
90        generate!("nvinfer1::IHostMemory")
91
92        // Try generating Dims64 directly (base class, not the typedef alias)
93        generate_pod!("nvinfer1::Dims64")
94
95        generate!("nvinfer1::DataType")
96        generate!("nvinfer1::TensorIOMode")
97        generate!("nvinfer1::MemoryPoolType")
98        generate!("nvinfer1::NetworkDefinitionCreationFlag")
99        generate!("nvinfer1::ActivationType")
100        generate!("nvinfer1::PoolingType")
101        generate!("nvinfer1::ElementWiseOperation")
102        generate!("nvinfer1::MatrixOperation")
103        generate!("nvinfer1::UnaryOperation")
104        generate!("nvinfer1::ReduceOperation")
105        generate!("nvinfer1::CumulativeOperation")
106        generate!("nvinfer1::GatherMode")
107        generate!("nvinfer1::ScatterMode")
108        generate!("nvinfer1::InterpolationMode")
109        generate!("nvinfer1::ResizeCoordinateTransformation")
110        generate!("nvinfer1::ResizeSelector")
111        generate!("nvinfer1::ResizeRoundMode")
112        // NOTE: RNN enums commented out because IRNNv2Layer (deprecated) cannot be generated
113        // generate!("nvinfer1::RNNOperation")
114        // generate!("nvinfer1::RNNDirection")
115        // generate!("nvinfer1::RNNInputMode")
116        // generate!("nvinfer1::RNNGateType")
117        generate_pod!("nvinfer1::Weights")
118
119        // NOTE: createInferBuilder/Runtime moved to logger_bridge.cpp (autocxx struggles with these)
120
121        // ONNX Parser
122        generate!("nvonnxparser::IParser")
123        // NOTE: createParser also moved to logger_bridge.cpp
124
125    }
126
127    // Logger bridge C functions
128    extern "C" {
129        pub fn get_tensorrt_version() -> u32;
130        pub fn create_rust_logger_bridge(
131            callback: RustLogCallback,
132            user_data: *mut std::ffi::c_void,
133        ) -> *mut RustLoggerBridge;
134
135        pub fn destroy_rust_logger_bridge(logger: *mut RustLoggerBridge);
136
137        pub fn get_logger_interface(logger: *mut RustLoggerBridge) -> *mut std::ffi::c_void; // Returns ILogger*
138
139        // TensorRT factory functions (wrapped as simple C functions)
140        #[cfg(feature = "link_tensorrt_rtx")]
141        pub fn create_infer_builder(logger: *mut std::ffi::c_void) -> *mut std::ffi::c_void; // Returns IBuilder*
142
143        #[cfg(feature = "link_tensorrt_rtx")]
144        pub fn create_infer_runtime(logger: *mut std::ffi::c_void) -> *mut std::ffi::c_void; // Returns IRuntime*
145
146        // ONNX Parser factory function
147        #[cfg(feature = "link_tensorrt_onnxparser")]
148        pub fn create_onnx_parser(
149            network: *mut std::ffi::c_void,
150            logger: *mut std::ffi::c_void,
151        ) -> *mut std::ffi::c_void; // Returns IParser*
152
153        // Builder methods
154        pub fn builder_create_network_v2(
155            builder: *mut std::ffi::c_void,
156            flags: u32,
157        ) -> *mut std::ffi::c_void;
158
159        pub fn builder_create_config(builder: *mut std::ffi::c_void) -> *mut std::ffi::c_void;
160
161        pub fn builder_build_serialized_network(
162            builder: *mut std::ffi::c_void,
163            network: *mut std::ffi::c_void,
164            config: *mut std::ffi::c_void,
165            out_size: *mut usize,
166        ) -> *mut std::ffi::c_void;
167
168        pub fn builder_config_set_memory_pool_limit(
169            config: *mut std::ffi::c_void,
170            pool_type: i32,
171            limit: usize,
172        );
173
174        // Network methods
175        // network_add_input - REMOVED - Using direct autocxx
176        // network_add_convolution - REMOVED - Using direct autocxx
177        // network_add_constant - REMOVED - Using direct autocxx
178        // network_add_scale - REMOVED - Using direct autocxx
179
180        pub fn network_mark_output(
181            network: *mut std::ffi::c_void,
182            tensor: *mut std::ffi::c_void,
183        ) -> bool;
184
185        pub fn network_get_nb_inputs(network: *mut std::ffi::c_void) -> i32;
186        pub fn network_get_nb_outputs(network: *mut std::ffi::c_void) -> i32;
187        pub fn network_get_input(
188            network: *mut std::ffi::c_void,
189            index: i32,
190        ) -> *mut std::ffi::c_void;
191        pub fn network_get_output(
192            network: *mut std::ffi::c_void,
193            index: i32,
194        ) -> *mut std::ffi::c_void;
195
196        // network_add_activation - REMOVED - Using direct autocxx
197
198        // network_add_pooling - REMOVED - Using direct autocxx
199
200        // network_add_elementwise - REMOVED - Using direct autocxx
201
202        // network_add_shuffle - REMOVED - Using direct autocxx
203
204        pub fn network_add_concatenation(
205            network: *mut std::ffi::c_void,
206            inputs: *mut *mut std::ffi::c_void,
207            nb_inputs: i32,
208        ) -> *mut std::ffi::c_void;
209
210        // network_add_reduce - REMOVED - Using direct autocxx
211
212        // network_add_slice - REMOVED - Using direct autocxx
213
214        // network_add_resize - REMOVED - Using direct autocxx
215
216        // network_add_topk - REMOVED - Using direct autocxx
217
218        // network_add_gather - REMOVED - Using direct autocxx
219
220        // network_add_select - REMOVED - Using direct autocxx
221
222        pub fn network_add_assertion(
223            network: *mut std::ffi::c_void,
224            condition: *mut std::ffi::c_void,
225            message: *const std::os::raw::c_char,
226        ) -> *mut std::ffi::c_void;
227
228        pub fn network_add_loop(network: *mut std::ffi::c_void) -> *mut std::ffi::c_void;
229
230        pub fn network_add_if_conditional(network: *mut std::ffi::c_void) -> *mut std::ffi::c_void;
231
232        // Tensor methods
233        pub fn tensor_get_name(tensor: *mut std::ffi::c_void) -> *const std::os::raw::c_char;
234        pub fn tensor_set_name(tensor: *mut std::ffi::c_void, name: *const std::os::raw::c_char);
235        pub fn tensor_get_dimensions(
236            tensor: *mut std::ffi::c_void,
237            dims: *mut i32,
238            nb_dims: *mut i32,
239        ) -> *mut std::ffi::c_void;
240        pub fn tensor_get_type(tensor: *mut std::ffi::c_void) -> i32;
241
242        // Runtime methods
243        pub fn runtime_deserialize_cuda_engine(
244            runtime: *mut std::ffi::c_void,
245            data: *const std::ffi::c_void,
246            size: usize,
247        ) -> *mut std::ffi::c_void;
248
249        // Engine methods
250        pub fn engine_get_nb_io_tensors(engine: *mut std::ffi::c_void) -> i32;
251        pub fn engine_get_tensor_name(
252            engine: *mut std::ffi::c_void,
253            index: i32,
254        ) -> *const std::os::raw::c_char;
255        pub fn engine_create_execution_context(
256            engine: *mut std::ffi::c_void,
257        ) -> *mut std::ffi::c_void;
258
259        // ExecutionContext methods
260        pub fn context_set_tensor_address(
261            context: *mut std::ffi::c_void,
262            name: *const std::os::raw::c_char,
263            data: *mut std::ffi::c_void,
264        ) -> bool;
265        pub fn context_enqueue_v3(
266            context: *mut std::ffi::c_void,
267            stream: *mut std::ffi::c_void,
268        ) -> bool;
269
270        // Parser methods
271        pub fn parser_parse(
272            parser: *mut std::ffi::c_void,
273            data: *const std::ffi::c_void,
274            size: usize,
275        ) -> bool;
276        pub fn parser_get_nb_errors(parser: *mut std::ffi::c_void) -> i32;
277        pub fn parser_get_error(parser: *mut std::ffi::c_void, index: i32)
278            -> *mut std::ffi::c_void;
279        pub fn parser_error_desc(error: *mut std::ffi::c_void) -> *const std::os::raw::c_char;
280
281        // Destruction methods
282        pub fn delete_builder(builder: *mut std::ffi::c_void);
283        pub fn delete_network(network: *mut std::ffi::c_void);
284        pub fn delete_config(config: *mut std::ffi::c_void);
285        pub fn delete_runtime(runtime: *mut std::ffi::c_void);
286        pub fn delete_engine(engine: *mut std::ffi::c_void);
287        pub fn delete_context(context: *mut std::ffi::c_void);
288        pub fn delete_parser(parser: *mut std::ffi::c_void);
289    }
290
291    // Opaque type for logger bridge
292    #[repr(C)]
293    pub struct RustLoggerBridge {
294        _unused: [u8; 0],
295    }
296
297    // Rust callback type for logger
298    pub type RustLogCallback = unsafe extern "C" fn(
299        user_data: *mut std::ffi::c_void,
300        severity: i32,
301        msg: *const std::os::raw::c_char,
302    );
303
304    // Re-export TensorRT types from the private ffi module
305    pub mod nvinfer1 {
306        pub use super::ffi::nvinfer1::*;
307    }
308
309    #[cfg(feature = "onnxparser")]
310    pub mod nvonnxparser {
311        pub use super::ffi::nvonnxparser::*;
312    }
313
314    // Re-export Dims64 as Dims to match TensorRT's typedef
315    pub use nvinfer1::Dims64;
316    pub type Dims = Dims64;
317
318    // Re-export InterpolationMode as ResizeMode to match TensorRT's typedef
319    pub use nvinfer1::InterpolationMode;
320    pub type ResizeMode = InterpolationMode;
321
322    /// Helper methods for Dims construction (avoiding name collision with generated constructor)
323    impl Dims64 {
324        /// Create a Dims from a slice of dimensions
325        pub fn from_slice(dims: &[i64]) -> Self {
326            let mut d = [0i64; 8];
327            let nb_dims = dims.len().min(8) as i32;
328            d[..nb_dims as usize].copy_from_slice(&dims[..nb_dims as usize]);
329            Self { nbDims: nb_dims, d }
330        }
331
332        /// Create a 2D Dims
333        pub fn new_2d(d0: i64, d1: i64) -> Self {
334            Self {
335                nbDims: 2,
336                d: [d0, d1, 0, 0, 0, 0, 0, 0],
337            }
338        }
339
340        /// Create a 3D Dims
341        pub fn new_3d(d0: i64, d1: i64, d2: i64) -> Self {
342            Self {
343                nbDims: 3,
344                d: [d0, d1, d2, 0, 0, 0, 0, 0],
345            }
346        }
347
348        /// Create a 4D Dims
349        pub fn new_4d(d0: i64, d1: i64, d2: i64, d3: i64) -> Self {
350            Self {
351                nbDims: 4,
352                d: [d0, d1, d2, d3, 0, 0, 0, 0],
353            }
354        }
355    }
356
357    // Re-export Weights
358    pub use nvinfer1::Weights;
359
360    /// Helper methods for Weights construction
361    impl nvinfer1::Weights {
362        /// Create a Weights with FLOAT data type
363        pub fn new_float(values_ptr: *const std::ffi::c_void, count_val: i64) -> Self {
364            Self {
365                type_: nvinfer1::DataType::kFLOAT,
366                values: values_ptr,
367                count: count_val,
368            }
369        }
370
371        /// Create a Weights with specified data type
372        pub fn new_with_type(
373            data_type: nvinfer1::DataType,
374            values_ptr: *const std::ffi::c_void,
375            count_val: i64,
376        ) -> Self {
377            Self {
378                type_: data_type,
379                values: values_ptr,
380                count: count_val,
381            }
382        }
383    }
384}
385
386#[cfg(not(feature = "mock"))]
387pub use real_bindings::*;
388
389#[cfg(test)]
390mod tests {
391    #[cfg(feature = "mock")]
392    use super::*;
393
394    #[test]
395    #[cfg(feature = "mock")]
396    fn test_constants() {
397        // Verify error codes are defined
398        assert_eq!(TRTX_SUCCESS, 0);
399        assert_ne!(TRTX_ERROR_INVALID_ARGUMENT, TRTX_SUCCESS);
400    }
401}