1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

use std::mem;
use std::ops::Index;
use std::slice;
use std::vec::Vec;

#[derive(Clone, PartialEq)]
pub struct ArraySequence<T> {
    pub offsets: Vec<usize>,
    pub data: Vec<T>,
}

impl<'a, T> IntoIterator for &'a ArraySequence<T> {
    type Item = &'a [T];
    type IntoIter = ArraySequenceIterator<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        ArraySequenceIterator {
            arr: self,
            it_idx: 0
        }
    }
}

pub struct ArraySequenceIterator<'a, T: 'a> {
    arr: &'a ArraySequence<T>,
    it_idx: usize
}

impl<'a, T> Iterator for ArraySequenceIterator<'a, T> {
    type Item = &'a [T];

    fn next(&mut self) -> Option<Self::Item> {
        if self.it_idx < self.arr.offsets.len() - 1 {
            self.it_idx += 1;
            Some(&self.arr[self.it_idx - 1])
        } else {
            None
        }
    }
}

impl<'a, T> IntoIterator for &'a mut ArraySequence<T> {
    type Item = &'a mut [T];
    type IntoIter = ArraySequenceIteratorMut<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        let mut offsets = self.offsets.iter();
        let last_offset = *offsets.next().unwrap();
        ArraySequenceIteratorMut { data: &mut self.data, offsets, last_offset }
    }
}

pub struct ArraySequenceIteratorMut<'a, T: 'a> {
    data: &'a mut [T],
    offsets: slice::Iter<'a, usize>,
    last_offset: usize,
}

impl<'a, T> Iterator for ArraySequenceIteratorMut<'a, T> {
    type Item = &'a mut [T];

    fn next(&mut self) -> Option<Self::Item> {
        let current_offset = *self.offsets.next()?;
        let nb_elements = current_offset - self.last_offset;
        self.last_offset = current_offset;

        let data = mem::replace(&mut self.data, &mut []);
        let (slice, remaining_data) = data.split_at_mut(nb_elements);
        self.data = remaining_data;
        Some(slice)
    }
}

impl<T> Index<usize> for ArraySequence<T> {
    type Output = [T];

    fn index<'a>(&'a self, i: usize) -> &'a Self::Output {
        let start = unsafe { *self.offsets.get_unchecked(i) };
        let end = unsafe { *self.offsets.get_unchecked(i + 1) };
        &self.data[start..end]
    }
}

impl<T> ArraySequence<T> {
    pub fn empty() -> ArraySequence<T> {
        ArraySequence { offsets: vec![0], data: vec![] }
    }

    pub fn with_capacity(n: usize) -> ArraySequence<T> {
        ArraySequence { offsets: vec![0], data: Vec::with_capacity(n) }
    }

    pub fn new(
        lengths: Vec<usize>,
        data: Vec<T>
    ) -> ArraySequence<T> {
        // CumSum over lengths. [0, ..., ..., data.len()]
        // There's an additional offset at the end because we want a
        // branchless `Index<usize>` function.
        let offsets = [0].iter().chain(&lengths).scan(0, |state, x| {
            *state += *x;
            Some(*state)
        }).collect::<Vec<usize>>();

        // Check if `offsets` fits with the numbers of points in `data`
        let expected_points = *offsets.last().unwrap();
        if expected_points != data.len() {
            panic!(
                "`offsets` declares {} points but `data` contains {} points.",
                expected_points, data.len());
        }

        ArraySequence { offsets, data: data }
    }

    pub fn push(&mut self, val: T) {
        self.data.push(val);
    }

    pub fn nb_push_done(&self) -> usize {
        self.data.len() - self.offsets.last().unwrap()
    }

    pub fn end_push(&mut self) {
        let nb = self.nb_push_done();
        if nb > 0 {
            self.offsets.push(self.data.len());
        }
    }

    pub fn len(&self) -> usize {
        self.offsets.len() - 1
    }

    /// Same as obj[i].len(), without building a slice
    pub fn length_of_array(&self, i: usize) -> usize {
        let current = unsafe { *self.offsets.get_unchecked(i) };
        let next = unsafe { *self.offsets.get_unchecked(i + 1) };
        next - current
    }

    pub fn filter<P>(&self, predicate: &mut P) -> ArraySequence<T>
        where P: FnMut(&[T]) -> bool,
              T: Clone
    {
        let mut new = ArraySequence::<T>::empty();
        for array in self {
            if predicate(array) {
                new.extend(array.iter().cloned());
            }
        }
        new
    }
}

impl<T> Extend<T> for ArraySequence<T> {
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        self.data.extend(iter);
        self.end_push();
    }
}

impl<T: Clone> ArraySequence<T> {
    pub fn extend_from_slice(&mut self, other: &[T]) {
        self.data.extend_from_slice(other);
        self.end_push();
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use nalgebra::RowVector3;
    pub type Point = RowVector3<f32>;

    #[test]
    fn test_integers() {
        let arr = ArraySequence::new(
            vec![2, 3, 2, 1],
            vec![4, 5, 6, 7, 8, 9, 10, 11]);
        assert_eq!(arr.len(), 4);
        assert_eq!(arr.offsets, vec![0, 2, 5, 7, 8]);
    }

    #[test]
    fn test_construction() {
        let arr = ArraySequence::new(
            vec![2, 3, 2],
            vec![Point::new(1.0, 0.0, 0.0),
                 Point::new(2.0, 0.0, 0.0),
                 Point::new(0.0, 1.0, 0.0),
                 Point::new(0.0, 2.0, 0.0),
                 Point::new(0.0, 3.0, 0.0),
                 Point::new(0.0, 0.0, 1.0),
                 Point::new(0.0, 0.0, 2.0)]);
        assert_eq!(arr.len(), 3);
        assert_eq!(arr.offsets, vec![0, 2, 5, 7]);
    }

    #[test]
    #[should_panic]
    fn test_new_not_enough() {
        ArraySequence::new(
            vec![2],
            vec![Point::new(1.0, 0.0, 0.0)]);
    }

    #[test]
    #[should_panic]
    fn test_new_too_much() {
        ArraySequence::new(
            vec![2],
            vec![Point::new(1.0, 0.0, 0.0),
                 Point::new(1.0, 0.0, 0.0),
                 Point::new(1.0, 0.0, 0.0)]);
    }

    #[test]
    fn test_iterator() {
        let arr = ArraySequence::new(
            vec![2, 3],
            vec![Point::new(1.0, 0.0, 0.0),
                 Point::new(2.0, 0.0, 0.0),
                 Point::new(0.0, 1.0, 0.0),
                 Point::new(0.0, 2.0, 0.0),
                 Point::new(0.0, 3.0, 0.0)]);
        let mut iter = arr.into_iter();
        assert_eq!(iter.next().unwrap(),
                   [Point::new(1.0, 0.0, 0.0),
                    Point::new(2.0, 0.0, 0.0)]);
        assert_eq!(iter.next().unwrap(),
                   [Point::new(0.0, 1.0, 0.0),
                    Point::new(0.0, 2.0, 0.0),
                    Point::new(0.0, 3.0, 0.0)]);
        assert_eq!(iter.next(), None);
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn test_iterator_mut() {
        let mut streamlines = ArraySequence::new(
            vec![2, 3, 2],
            vec![Point::new(1.0, 0.0, 0.0),
                 Point::new(2.0, 0.0, 0.0),
                 Point::new(0.0, 1.0, 0.0),
                 Point::new(0.0, 2.0, 0.0),
                 Point::new(0.0, 3.0, 0.0),
                 Point::new(0.0, 0.0, 1.0),
                 Point::new(0.0, 0.0, 2.0)]);
        // TODO Use enumerate
        let mut i = 0;
        for streamline in &mut streamlines {
            for p in streamline {
                if i % 2 == 0 {
                    *p = Point::zeros();
                }
            }
            i += 1;
        }
        let mut iter = streamlines.into_iter();
        assert_eq!(iter.next().unwrap(), [Point::zeros(), Point::zeros()]);
        assert_eq!(iter.next().unwrap(), [Point::new(0.0, 1.0, 0.0),
                                          Point::new(0.0, 2.0, 0.0),
                                          Point::new(0.0, 3.0, 0.0)]);
        assert_eq!(iter.next().unwrap(), [Point::zeros(), Point::zeros()]);
        assert_eq!(iter.next(), None);
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn test_dynamic() {
        let mut arr = ArraySequence::empty();
        for i in 0..10 {
            assert_eq!(arr.nb_push_done(), i);
            arr.push(i);
            assert_eq!(arr.nb_push_done(), i + 1);
        }
        arr.end_push();
        assert_eq!(arr.nb_push_done(), 0);

        assert_eq!(arr.len(), 1);
        assert_eq!(arr.length_of_array(0), 10);
        assert_eq!(arr[0].len(), 10);
        assert_eq!(arr.offsets, vec![0, 10]);

        arr.extend(vec![11, 12, 13, 14, 15]);
        assert_eq!(arr.len(), 2);
        assert_eq!(arr.length_of_array(0), 10);
        assert_eq!(arr[0].len(), 10);
        assert_eq!(arr.length_of_array(1), 5);
        assert_eq!(arr[1].len(), 5);
        assert_eq!(arr.offsets, vec![0, 10, 15]);

        arr.extend_from_slice(&[20, 21, 22, 23]);
        assert_eq!(arr.len(), 3);
        assert_eq!(arr[2].len(), 4);
        assert_eq!(arr.offsets, vec![0, 10, 15, 19]);
    }

    #[test]
    fn test_empty_push() {
        let mut arr = ArraySequence::<f64>::empty();
        assert_eq!(arr.len(), 0);
        assert_eq!(arr.offsets, vec![0]);

        // An `end_push` without any `push` should do nothing
        arr.end_push();

        assert_eq!(arr.len(), 0);
        assert_eq!(arr.offsets, vec![0]);
    }

    #[test]
    fn test_filter() {
        let p = Point::new(1.0, 1.0, 1.0);
        let arr = ArraySequence::new(
            vec![2, 3, 2, 3],
            vec![p * 1.0, p * 2.0,
                 p * 2.0, p * 3.0, p * 4.0,
                 p * 3.0, p * 4.0,
                 p * 4.0, p * 5.0, p * 6.0]);
        let filtered = arr.filter(&mut |arr: &[Point]| arr.len() == 3);
        assert_eq!(filtered.len(), 2);
        assert_eq!(filtered[0], [p * 2.0, p * 3.0, p * 4.0]);
        assert_eq!(filtered[1], [p * 4.0, p * 5.0, p * 6.0]);

        // Ensure that arr is still usable
        assert_eq!(arr.len(), 4);
    }
}