tritonserver_rs/
memory.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
//! Module responsible for memory allocation and assignments.
//!
//! **NOTE**: some functions that uses CUDA must be run in synchronous context +
//! [crate::context::Context] must me pushed as current. \
//! To simplify satisfaction of this requirement, those methods can be run with [crate::run_in_context] or [crate::run_in_context_sync] macro.
//! ```
//! run_in_context!(0, Buffer::alloc<f32>(10, MemoryType::Gpu))
//! ```

use core::slice;
use std::{
    ffi::CStr,
    fmt::Debug,
    intrinsics::copy_nonoverlapping,
    mem::{size_of_val, transmute},
    ops::{Bound, RangeBounds},
};

#[cfg(feature = "gpu")]
use cuda_driver_sys::{
    cuMemAllocHost_v2, cuMemAlloc_v2, cuMemFreeHost, cuMemFree_v2, cuMemcpyDtoD_v2,
    cuMemcpyDtoH_v2, cuMemcpyHtoD_v2, CUdeviceptr,
};
use libc::{c_void, calloc, free};

use crate::{
    error::{Error, ErrorCode, CSTR_CONVERT_ERROR_PLUG},
    sys, to_cstring,
};

macro_rules! impl_sample {
    ($type:ty, $data:expr) => {
        impl private::Sealed for $type {}

        impl Sample for $type {
            const DATA_TYPE: DataType = $data;
        }
    };
}

mod private {
    pub trait Sealed: Clone + Copy {}
}

/// Trait of objects that can be stored in Buffer.
pub trait Sample: private::Sealed {
    const DATA_TYPE: DataType;
}

/// Tensor data types recognized by TRITONSERVER.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(u32)]
pub enum DataType {
    Invalid = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_INVALID,
    Bool = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_BOOL,
    Uint8 = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_UINT8,
    Uint16 = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_UINT16,
    Uint32 = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_UINT32,
    Uint64 = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_UINT64,
    Int8 = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_INT8,
    Int16 = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_INT16,
    Int32 = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_INT32,
    Int64 = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_INT64,
    Fp16 = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_FP16,
    Fp32 = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_FP32,
    Fp64 = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_FP64,
    Bytes = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_BYTES,
    Bf16 = sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_BF16,
}

#[derive(Clone, Copy)]
pub struct Byte(pub u8);

impl_sample!(bool, DataType::Bool);
impl_sample!(u8, DataType::Uint8);
impl_sample!(Byte, DataType::Bytes);
impl_sample!(u16, DataType::Uint16);
impl_sample!(u32, DataType::Uint32);
impl_sample!(u64, DataType::Uint64);

impl_sample!(i8, DataType::Int8);
impl_sample!(i16, DataType::Int16);
impl_sample!(i32, DataType::Int32);
impl_sample!(i64, DataType::Int64);

impl_sample!(half::f16, DataType::Fp16);
impl_sample!(half::bf16, DataType::Bf16);
impl_sample!(f32, DataType::Fp32);
impl_sample!(f64, DataType::Fp64);

impl DataType {
    /// Get the string representation of a data type.
    pub fn as_str(self) -> &'static str {
        let ptr = unsafe { sys::TRITONSERVER_DataTypeString(self as u32) };
        unsafe { CStr::from_ptr(ptr) }
            .to_str()
            .unwrap_or(CSTR_CONVERT_ERROR_PLUG)
    }

    /// Get the size of a Triton datatype in bytes. Zero is returned for [DataType::Bytes] because it have variable size.
    pub fn size(self) -> u32 {
        unsafe { sys::TRITONSERVER_DataTypeByteSize(self as u32) }
    }
}

impl TryFrom<&str> for DataType {
    type Error = Error;
    /// Get the Triton datatype corresponding to a string representation of a datatype.
    fn try_from(name: &str) -> Result<Self, Self::Error> {
        let name = to_cstring(name)?;
        let data_type = unsafe { sys::TRITONSERVER_StringToDataType(name.as_ptr()) };
        if data_type != sys::TRITONSERVER_datatype_enum_TRITONSERVER_TYPE_INVALID {
            Ok(unsafe { transmute::<u32, crate::memory::DataType>(data_type) })
        } else {
            Err(Error::new(ErrorCode::InvalidArg, ""))
        }
    }
}

/// Types of memory recognized by TRITONSERVER.
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Eq, Ord, Hash)]
#[repr(u32)]
pub enum MemoryType {
    Cpu = sys::TRITONSERVER_memorytype_enum_TRITONSERVER_MEMORY_CPU,
    Pinned = sys::TRITONSERVER_memorytype_enum_TRITONSERVER_MEMORY_CPU_PINNED,
    Gpu = sys::TRITONSERVER_memorytype_enum_TRITONSERVER_MEMORY_GPU,
}

impl MemoryType {
    /// Get the string representation of a memory type.
    pub fn as_str(self) -> &'static str {
        let ptr = unsafe { sys::TRITONSERVER_MemoryTypeString(self as u32) };
        unsafe { CStr::from_ptr(ptr) }
            .to_str()
            .unwrap_or(CSTR_CONVERT_ERROR_PLUG)
    }
}

/// Representation of GPU based cuda array.
///
/// Does not delete array on drop.
#[cfg(feature = "gpu")]
pub struct CudaArray {
    pub ptr: CUdeviceptr,
    pub len: usize,
}

/// Data storring buffer.
///
/// Deletes data on drop.
// # Safety
// As long as no one changes the owned field
// and there is no overlapped buffers, they are thread safe. \
// Since no one can change the state of Buffer using reference
// and ptr pointing on heap/gpu, it's Sync.
#[derive(Debug)]
pub struct Buffer {
    pub(crate) ptr: *mut c_void,
    // Byte size,
    pub(crate) len: usize,
    pub(crate) data_type: DataType,
    pub(crate) memory_type: MemoryType,
    /// Should we execute the Drop or not.
    pub(crate) owned: bool,
}

unsafe impl Send for Buffer {}
unsafe impl Sync for Buffer {}

/// Buffer creation section.
impl Buffer {
    /// Try clone buffer content.
    ///
    /// **Note**: If memory type is not Cpu, should be called in sync with cuda context pinned (check module level documentation for more info).
    pub fn try_clone(&self) -> Result<Self, Error> {
        self.check_mem_type_feature()?;

        let sample_count = self.len / self.data_type.size() as usize;
        let mut res = Buffer::alloc_with_data_type(sample_count, self.memory_type, self.data_type)?;

        if self.memory_type == MemoryType::Gpu {
            #[cfg(feature = "gpu")]
            res.copy_from_cuda_array(0, unsafe { self.get_cuda_array() })?;
        } else {
            res.copy_from_slice(0, self.bytes())?;
        }

        Ok(res)
    }

    /// Allocate new buffer of requested memory type.\
    /// `count`: size of buffer in `T` units (i.e. 128 chunks of f32 (that has byte size 512) should be allocated with `count=128`).\
    /// `memory_type`: Cpu/Pinned/Gpu.
    ///
    /// **Note**: If memory type is not Cpu, should be called in sync with cuda context pinned (check module level documentation for more info).
    pub fn alloc<T: Sample>(count: usize, memory_type: MemoryType) -> Result<Self, Error> {
        Self::alloc_with_data_type(count, memory_type, T::DATA_TYPE)
    }

    /// Allocate new buffer of requested memory type.\
    /// `count`: size of buffer in `T` units (i.e. 128 chunks of f32 (that has byte size 512) should be allocated with `count=128`).\
    /// `memory_type`: Cpu/Pinned/Gpu.\
    /// `data_type`: type of Samples.
    ///
    /// **Note**: If memory type is not Cpu, should be called in sync with cuda context pinned (check module level documentation for more info).
    pub fn alloc_with_data_type(
        count: usize,
        memory_type: MemoryType,
        data_type: DataType,
    ) -> Result<Self, Error> {
        let data_type_size = data_type.size() as usize;
        let size = count * data_type_size;

        let ptr = match memory_type {
            MemoryType::Cpu => Ok::<_, Error>(unsafe { calloc(count as _, data_type_size) }),
            MemoryType::Pinned => {
                #[cfg(not(feature = "gpu"))]
                return Err(Error::wrong_type(memory_type));
                #[cfg(feature = "gpu")]
                {
                    let mut data = std::ptr::null_mut::<c_void>();
                    cuda_call!(cuMemAllocHost_v2(&mut data, size))?;
                    Ok(data)
                }
            }
            MemoryType::Gpu => {
                #[cfg(not(feature = "gpu"))]
                return Err(Error::wrong_type(memory_type));
                #[cfg(feature = "gpu")]
                {
                    let mut data = 0;
                    cuda_call!(cuMemAlloc_v2(&mut data, size))?;
                    Ok(data as *mut c_void)
                }
            }
        }?;

        if ptr.is_null() {
            Err(Error::new(
                ErrorCode::Internal,
                format!("OutOfMemory. {memory_type:?}"),
            ))
        } else {
            Ok(Buffer {
                ptr,
                len: size,
                data_type,
                memory_type,
                owned: true,
            })
        }
    }

    /// Create CPU buffer of data type `T::DARA_TYPE` from `slice` of T.
    pub fn from<T: Sample, S: AsRef<[T]>>(slice: S) -> Self {
        let slice = slice.as_ref();
        let ptr = unsafe {
            let ptr = calloc(slice.len(), std::mem::size_of::<T>()) as *mut T;
            copy_nonoverlapping(slice.as_ptr(), ptr, slice.len());
            ptr
        };

        Buffer {
            ptr: ptr as *mut _,
            len: size_of_val(slice),
            data_type: T::DATA_TYPE,
            memory_type: MemoryType::Cpu,
            owned: true,
        }
    }
}

/// Create GPU buffers of [DataType::Uint8] from [CudaArray].
/// Result memory type will be [MemoryType::Gpu].
///
/// Note that nothing is allocated on this call, meaning that result buffer will just point on
/// data provided by argument.
#[cfg(feature = "gpu")]
impl From<CudaArray> for Buffer {
    fn from(value: CudaArray) -> Self {
        Buffer {
            ptr: value.ptr as *mut c_void,
            len: value.len,
            data_type: DataType::Uint8,
            memory_type: MemoryType::Gpu,
            owned: true,
        }
    }
}

/// Create [CudaArray] from [Buffer].
///
/// Buffer destructor will not be invoked so data will be safe.
#[cfg(feature = "gpu")]
impl From<Buffer> for CudaArray {
    fn from(value: Buffer) -> CudaArray {
        let res = CudaArray {
            ptr: value.ptr as _,
            len: value.len,
        };
        std::mem::forget(value);
        res
    }
}

/// Buffer metadata section.
impl Buffer {
    /// Get memory type of storred data.
    pub fn memory_type(&self) -> MemoryType {
        self.memory_type
    }

    /// Get data type of storred data.
    pub fn data_type(&self) -> DataType {
        self.data_type
    }

    /// Get byte size of data.
    pub fn size(&self) -> usize {
        self.len
    }

    /// True if not containing any data.
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }
}

/// Buffer data permutation section.
impl Buffer {
    /// Copy `source` content to self from the `offset` position.\
    /// Returns error if offset + size_of_val(source) > self.size().
    ///
    /// `offset`: offset (in bytes) from the beginning of the Buffer to location to copy `source` to.
    /// `source`: slice of Samples.
    ///
    /// **Note**: If self.memory_type is not Cpu, should be called in sync with cuda context pinned (check module level documentation for more info).
    pub fn copy_from_slice<S: AsRef<[T]>, T: Sample>(
        &mut self,
        offset: usize,
        source: S,
    ) -> Result<(), Error> {
        self.check_mem_type_feature()?;

        let slice = source.as_ref();

        let byte_size = size_of_val(slice);

        if self.len < byte_size + offset {
            return Err(Error::new(
                ErrorCode::Internal,
                format!(
                    "copy_from_slice error: size mismatch! (required {}, buffer len {})",
                    byte_size + offset,
                    self.len
                ),
            ));
        }

        match self.memory_type {
            MemoryType::Cpu | MemoryType::Pinned => unsafe {
                copy_nonoverlapping(slice.as_ptr(), self.ptr.byte_add(offset) as _, slice.len());
            },
            MemoryType::Gpu => {
                #[cfg(feature = "gpu")]
                cuda_call!(cuMemcpyHtoD_v2(
                    self.ptr as CUdeviceptr + offset as CUdeviceptr,
                    slice.as_ptr() as _,
                    byte_size
                ))?;
            }
        }
        Ok(())
    }

    /// Copy `source` content to self from the `offset` position.\
    /// Returns error if offset + source.len > self.size().
    ///
    /// `offset`: offset (in bytes) from the beginning of the Buffer to location to copy `source` to.
    /// `source`: cuda array.
    ///
    /// **Note**: This method should be called in sync with cuda context pinned (check module level documentation for more info).
    #[cfg(feature = "gpu")]
    pub fn copy_from_cuda_array(&mut self, offset: usize, source: CudaArray) -> Result<(), Error> {
        let CudaArray { ptr, len } = source;

        if len + offset > self.len {
            return Err(Error::new(
                ErrorCode::Internal,
                format!(
                    "copy_from_cuda_array error: size mismatch (buffer len {}, required {})",
                    self.len,
                    len + offset
                ),
            ));
        }

        match self.memory_type {
            MemoryType::Pinned | MemoryType::Cpu => {
                cuda_call!(cuMemcpyDtoH_v2(
                    self.ptr.byte_add(offset),
                    ptr as CUdeviceptr,
                    len
                ))?;
            }
            MemoryType::Gpu => {
                cuda_call!(cuMemcpyDtoD_v2(
                    self.ptr as CUdeviceptr + offset as CUdeviceptr,
                    ptr as CUdeviceptr,
                    len
                ))?;
            }
        }
        Ok(())
    }

    /// Move this Buffer content to CPU memory.
    ///
    /// **Note**: If self.memory_type() is not Cpu, method should be called in sync with cuda context pinned (check module level documentation for more info).
    pub fn into_cpu(self) -> Result<Self, Error> {
        self.into_mem_type(MemoryType::Cpu)
    }

    /// Move this Buffer content to Pinned memory.
    ///
    /// **Note**: This method should be called in sync with cuda context pinned (check module level documentation for more info).
    #[cfg(feature = "gpu")]
    pub fn into_pinned(self) -> Result<Self, Error> {
        self.into_mem_type(MemoryType::Pinned)
    }

    /// Move this Buffer content to Gpu memory.
    ///
    /// **Note**: This method should be called in sync with cuda context pinned (check module level documentation for more info).
    #[cfg(feature = "gpu")]
    pub fn into_gpu(self) -> Result<Self, Error> {
        self.into_mem_type(MemoryType::Gpu)
    }

    fn into_mem_type(self, mem_type: MemoryType) -> Result<Self, Error> {
        self.check_mem_type_feature()?;

        if self.memory_type == mem_type {
            return Ok(self);
        }

        let sample_count = self.len / self.data_type.size() as usize;
        let mut res = Buffer::alloc_with_data_type(sample_count, mem_type, self.data_type)?;

        if self.memory_type == MemoryType::Gpu {
            #[cfg(feature = "gpu")]
            res.copy_from_cuda_array(0, unsafe { self.get_cuda_array() })?;
        } else {
            res.copy_from_slice(0, self.bytes())?;
        }
        Ok(res)
    }
}

/// Obtaining buffer content section.
impl Buffer {
    /// Get buffer content as bytes.
    ///
    /// Will return nothing if self.memory_type == Gpu. Use [Buffer::get_owned_slice] instead.
    pub fn bytes(&self) -> &[u8] {
        if self.memory_type == MemoryType::Gpu {
            log::warn!("Use bytes() on Gpu Buffer. empty slice will be returned");
            return &[];
        }

        unsafe { slice::from_raw_parts(self.ptr as *const u8, self.len) }
    }

    /// Get buffer mutable content as bytes.
    ///
    /// Will return nothing if self.memory_type == Gpu. [Buffer::get_cuda_array] can be used instead to implement this logic.
    pub fn bytes_mut(&mut self) -> &mut [u8] {
        if self.memory_type == MemoryType::Gpu {
            log::warn!("Use bytes_mut() on Gpu Buffer. empty slice will be returned");
            return &mut [];
        }

        unsafe { slice::from_raw_parts_mut(self.ptr as *mut u8, self.len) }
    }

    /// Get content of the buffer as host located bytes.\
    /// `range`: part of the buffer to return.
    pub fn get_owned_slice<Range: RangeBounds<usize> + Debug>(
        &self,
        range: Range,
    ) -> Result<Vec<u8>, Error> {
        self.check_mem_type_feature()?;

        let left = match range.start_bound() {
            Bound::Unbounded => 0,
            Bound::Included(pos) => *pos,
            Bound::Excluded(pos) => *pos + 1,
        };
        let right = match range.end_bound() {
            Bound::Unbounded => self.len,
            Bound::Included(pos) => *pos + 1,
            Bound::Excluded(pos) => *pos,
        };

        if right > self.len {
            return Err(Error::new(
                ErrorCode::InvalidArg,
                format!(
                    "get_slice invalid range: {range:?}, buffer len is: {}",
                    self.len
                ),
            ));
        }

        if self.memory_type != MemoryType::Gpu {
            Ok(self.bytes()[left..right].to_vec())
        } else {
            let mut res = Vec::with_capacity(right - left);
            #[cfg(feature = "gpu")]
            cuda_call!(cuMemcpyDtoH_v2(
                res.as_mut_ptr() as _,
                self.ptr as CUdeviceptr + left as CUdeviceptr,
                right - left
            ))?;

            unsafe { res.set_len(self.len) };
            Ok(res)
        }
    }

    /// Get content of the GPU based buffer.
    /// # Panics
    /// Panics if self.memory_type != Gpu.
    /// # Safety
    /// Returned struct points to the same location as buffer, so the rules are the same as sharing *mut on an object. \
    /// Be careful: Buffer will delete data on drop, so be afraid of double memory free.
    /// Also any shinenigans with the data during the inference are forbidden: Triton must have exclusive write ascess to data during the inference.
    #[cfg(feature = "gpu")]
    pub unsafe fn get_cuda_array(&self) -> CudaArray {
        if self.memory_type != MemoryType::Gpu {
            panic!("Invoking get_cuda_array for non GPU-based buffer");
        }

        CudaArray {
            ptr: self.ptr as _,
            len: self.len,
        }
    }

    fn check_mem_type_feature(&self) -> Result<(), Error> {
        #[cfg(not(feature = "gpu"))]
        if self.memory_type != MemoryType::Cpu {
            return Err(Error::wrong_type(self.memory_type));
        }
        Ok(())
    }
}

impl<T: Sample> AsRef<[T]> for Buffer {
    /// Converts this type into a shared reference on the slice of T.
    ///
    /// Will return nothing if self.memory_type == Gpu.
    /// # Panics
    /// Panics if T does not match Buffer data type.
    fn as_ref(&self) -> &[T] {
        if T::DATA_TYPE != self.data_type {
            panic!(
                "Buffer data_type {:?} != target slice data_type: {:?}",
                self.data_type,
                T::DATA_TYPE
            )
        }

        if self.memory_type == MemoryType::Gpu {
            log::warn!("Use as_ref() on Gpu Buffer. empty slice will be returned");
            return &[];
        }

        unsafe { slice::from_raw_parts(self.ptr as *const T, self.len) }
    }
}

impl<T: Sample> AsMut<[T]> for Buffer {
    /// Converts this type into a mutable reference on the slice of T.
    ///
    /// Will return nothing if self.memory_type == Gpu.
    /// # Panics
    /// Panics if T does not match Buffer data type.
    fn as_mut(&mut self) -> &mut [T] {
        if T::DATA_TYPE != self.data_type {
            panic!(
                "Buffer data_type {:?} != target slice data_type: {:?}",
                self.data_type,
                T::DATA_TYPE
            )
        }

        if self.memory_type == MemoryType::Gpu {
            log::warn!("Use as_mut() on Gpu Buffer. empty slice will be returned");
            return &mut [];
        }

        unsafe { slice::from_raw_parts_mut(self.ptr as *mut T, self.len) }
    }
}

impl Drop for Buffer {
    fn drop(&mut self) {
        if self.owned && !self.ptr.is_null() {
            unsafe {
                match self.memory_type {
                    MemoryType::Cpu => {
                        free(self.ptr);
                    }
                    MemoryType::Pinned => {
                        #[cfg(feature = "gpu")]
                        cuMemFreeHost(self.ptr);
                    }
                    MemoryType::Gpu => {
                        #[cfg(feature = "gpu")]
                        cuMemFree_v2(self.ptr as CUdeviceptr);
                    }
                }
            }
        }
    }
}