tritonserver_rs/request.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
pub(crate) mod infer;
mod utils;
pub use crate::trace::Trace;
pub use infer::{InferenceError, InputRelease, ResponseFuture};
use std::{collections::HashMap, ffi::CStr, os::raw::c_char, ptr::null, time::Duration};
use bitflags::bitflags;
use crate::{
error::{ErrorCode, CSTR_CONVERT_ERROR_PLUG},
memory::{Buffer, DataType, MemoryType},
message::Shape,
run_in_context, sys, to_cstring, Error, Server,
};
bitflags! {
/// Inference request sequence flag.
pub struct Sequence: u32 {
const START = sys::tritonserver_requestflag_enum_TRITONSERVER_REQUEST_FLAG_SEQUENCE_START;
const END = sys::tritonserver_requestflag_enum_TRITONSERVER_REQUEST_FLAG_SEQUENCE_END;
}
}
/// Allocator, that user provides in order to allocate output buffers when they are needed for Triton. \
/// [Allocator::allocate] will be invoked after [Request::infer_async] call once for each model's output. The name of the requested output, it's memory type
/// and byte size are passed as arguments.
///
/// Allocator should be able to allocate buffer for each model's output.
///
/// **Note**: Allocated buffers can be returned via [crate::Response::return_buffers] method. \
/// **Note** allocate() method can be not invoked at all, for example, if model error occures before output is needed.
#[async_trait::async_trait]
pub trait Allocator: Send {
/// Allocate output buffer for output with name `tensor_name`.
///
/// **NOTES:**:
/// - It's not necessary to allocate buffer on exact requested_memory_type: for example, it's fine to allocate buffer on Pinned when Triton requested GPU buffer.
/// The only requirement is not to allocate CPU memory when GPU is requested and vice versa.
/// - Buffer of greater or equal size than requested `byte_size` can be allocated but not the smaller.
/// - Allocated buffer's datatype must match this output datatype specified in the model's config.
/// - Method will be invoked in asynchronous context.
async fn allocate(
&mut self,
tensor_name: String,
requested_memory_type: MemoryType,
byte_size: usize,
) -> Result<Buffer, Error>;
}
/// Default allocator.
///
/// Will allocate exact `byte_size` bytes (datatype &ndash `u8`) of `requested_memory_type` for each output.
///
/// If tensor types provided via [add_tensor_type](DefaultAllocator::add_tensor_type) or [with_tensors_types](DefaultAllocator::with_tensors_types)
/// corresponding datatypes will be used for each output (instead of `u8`).
///
/// Note that if you use methods above, all the models outputs must be provided as hints.
/// If only few of models output is provided via methods above,
/// the DefaultAllocator::allocate will return [ErrorCode::NotFound] error on missing outputs.
#[derive(Debug, Default, Clone)]
pub struct DefaultAllocator {
tensor_types: HashMap<String, DataType>,
}
impl DefaultAllocator {
/// Create new DefaultAllocator.
pub fn new() -> Self {
Self::default()
}
/// Add output tensor type hint. I.e. Buffer of `data_type` data type will be allocated for output tensor `tensor_name`.
///
/// Note that if you use this method, all the models outputs must be provided as hints.
/// If only few of models output is provided,
/// the DefaultAllocator::allocate will return [ErrorCode::NotFound] error on missing outputs.
pub fn add_tensor_type<N: AsRef<str>>(&mut self, tensor_name: N, data_type: DataType) {
let _ = self
.tensor_types
.insert(tensor_name.as_ref().to_string(), data_type);
}
/// Create DefaultAllocator with output tensors data type hints `tensor_types`.
///
/// Note that if you use this method, all the models outputs must be provided as hints.
/// If only few of models output is provided,
/// the DefaultAllocator::allocate will return [ErrorCode::NotFound] error on missing outputs.
pub fn with_tensors_types(tensor_types: HashMap<String, DataType>) -> Self {
Self { tensor_types }
}
}
#[async_trait::async_trait]
impl Allocator for DefaultAllocator {
async fn allocate(
&mut self,
tensor_name: String,
requested_mem_type: MemoryType,
byte_size: usize,
) -> Result<Buffer, Error> {
if self.tensor_types.is_empty() {
run_in_context!(0, Buffer::alloc::<u8>(byte_size, requested_mem_type))
} else {
let data_type = *self.tensor_types.get(&tensor_name).ok_or_else(|| {
Error::new(
ErrorCode::NotFound,
format!(
"Tensor {tensor_name} not found for DefaultAllocator: {:?}",
self.tensor_types
),
)
})?;
let data_type_size = data_type.size();
run_in_context!(
0,
Buffer::alloc_with_data_type(
(byte_size as f32 / data_type_size as f32).ceil() as usize,
requested_mem_type,
data_type,
)
)
}
}
}
/// Inference request object.\
/// One can get this item using [Server::create_request].
///
/// It's required to add input data and Allocator to this structure before the inference via one of [add_input](Request::add_input) methods via [Request::add_allocator] or [Request::add_default_allocator] method.
pub struct Request<'a> {
ptr: *mut sys::TRITONSERVER_InferenceRequest,
model_name: String,
input: HashMap<String, Buffer>,
custom_allocator: Option<Box<dyn Allocator>>,
custom_trace: Option<Trace>,
// Уверяемся, что Server не дропнется во время выполнения Request. \
// Server(Arc<Inner>)
server: &'a Server,
}
impl<'a> Request<'a> {
pub(crate) fn new<M: AsRef<str>>(
ptr: *mut sys::TRITONSERVER_InferenceRequest,
server: &'a Server,
model: M,
) -> Result<Request, Error> {
Ok(Request {
ptr,
model_name: model.as_ref().to_string(),
input: HashMap::new(),
custom_allocator: None,
custom_trace: None,
server,
})
}
/// Add custom Allocator to the request. \
/// Check [Allocator] trait for more info.
pub fn add_allocator(&mut self, custom_allocator: Box<dyn Allocator>) -> &mut Self {
let _ = self.custom_allocator.replace(custom_allocator);
self
}
/// Add [DefaultAllocator] to the request. \
/// Check [Allocator] trait and [DefaultAllocator] for more info.
pub fn add_default_allocator(&mut self) -> &mut Self {
let _ = self
.custom_allocator
.replace(Box::new(DefaultAllocator::new()));
self
}
/// Add custom Trace to the request. \
/// If this method is not invoked, no tracing will be provided. \
/// Check [Trace] for more info about tracing.
pub fn add_trace(&mut self, custom_trace: Trace) -> &mut Self {
let _ = self.custom_trace.replace(custom_trace);
self
}
/// Get the ID of the request.
pub fn get_id(&self) -> Result<&str, Error> {
let mut id = null::<c_char>();
triton_call!(sys::TRITONSERVER_InferenceRequestId(
self.ptr,
&mut id as *mut _
))?;
assert!(!id.is_null());
Ok(unsafe { CStr::from_ptr(id) }
.to_str()
.unwrap_or(CSTR_CONVERT_ERROR_PLUG))
}
/// Set the ID of the request.
pub fn set_id<I: AsRef<str>>(&mut self, id: I) -> Result<&mut Self, Error> {
let id = to_cstring(id)?;
triton_call!(
sys::TRITONSERVER_InferenceRequestSetId(self.ptr, id.as_ptr()),
self
)
}
/// Get the flag(s) associated with the request. \
/// Check [Sequence] for available flags.
pub fn get_flags(&self) -> Result<Sequence, Error> {
let mut flag: u32 = 0;
triton_call!(
sys::TRITONSERVER_InferenceRequestFlags(self.ptr, &mut flag as *mut _),
unsafe { Sequence::from_bits_unchecked(flag) }
)
}
/// Set the flag(s) associated with a request. \
/// Check [Sequence] for available flags.
pub fn set_flags(&mut self, flags: Sequence) -> Result<&mut Self, Error> {
triton_call!(
sys::TRITONSERVER_InferenceRequestSetFlags(self.ptr, flags.bits()),
self
)
}
/// Get the correlation ID of the inference request. \
/// Default is 0, which indicates that the request has no correlation ID. \
/// If the correlation id associated with the inference request is a string, this function will return a failure. \
/// The correlation ID is used to indicate two or more inference request are related to each other. \
/// How this relationship is handled by the inference server is determined by the model's scheduling policy.
pub fn get_correlation_id(&self) -> Result<u64, Error> {
let mut id: u64 = 0;
triton_call!(
sys::TRITONSERVER_InferenceRequestCorrelationId(self.ptr, &mut id as *mut _),
id
)
}
/// Get the correlation ID of the inference request as a string. \
/// Default is empty "", which indicates that the request has no correlation ID. \
/// If the correlation id associated with the inference request is an unsigned integer, then this function will return a failure. \
/// The correlation ID is used to indicate two or more inference request are related to each other. \
/// How this relationship is handled by the inference server is determined by the model's scheduling policy.
pub fn get_correlation_id_as_str(&self) -> Result<&str, Error> {
let mut id = null::<c_char>();
triton_call!(sys::TRITONSERVER_InferenceRequestCorrelationIdString(
self.ptr,
&mut id as *mut _
))?;
assert!(!id.is_null());
Ok(unsafe { CStr::from_ptr(id) }
.to_str()
.unwrap_or(CSTR_CONVERT_ERROR_PLUG))
}
/// Set the correlation ID of the inference request to be an unsigned integer. \
/// Default is 0, which indicates that the request has no correlation ID. \
/// The correlation ID is used to indicate two or more inference request are related to each other. \
/// How this relationship is handled by the inference server is determined by the model's scheduling policy.
pub fn set_correlation_id(&mut self, id: u64) -> Result<&mut Self, Error> {
triton_call!(
sys::TRITONSERVER_InferenceRequestSetCorrelationId(self.ptr, id),
self
)
}
/// Set the correlation ID of the inference request to be a string. \
/// The correlation ID is used to indicate two or more inference request are related to each other. \
/// How this relationship is handled by the inference server is determined by the model's scheduling policy.
pub fn set_correlation_id_as_str<I: AsRef<str>>(&mut self, id: I) -> Result<&mut Self, Error> {
let id = to_cstring(id)?;
triton_call!(
sys::TRITONSERVER_InferenceRequestSetCorrelationIdString(self.ptr, id.as_ptr()),
self
)
}
/// Get the priority of the request. \
/// The default is 0 indicating that the request does not specify a priority and so will use the model's default priority.
pub fn get_priority(&self) -> Result<u32, Error> {
let mut priority: u32 = 0;
triton_call!(
sys::TRITONSERVER_InferenceRequestPriority(self.ptr, &mut priority as *mut _),
priority
)
}
/// Set the priority of the request. \
/// The default is 0 indicating that the request does not specify a priority and so will use the model's default priority.
pub fn set_priority(&mut self, priority: u32) -> Result<&mut Self, Error> {
triton_call!(
sys::TRITONSERVER_InferenceRequestSetPriority(self.ptr, priority),
self
)
}
/// Get the timeout of the request. \
/// The default is 0 which indicates that the request has no timeout.
pub fn get_timeout(&self) -> Result<Duration, Error> {
let mut timeout_us: u64 = 0;
triton_call!(
sys::TRITONSERVER_InferenceRequestTimeoutMicroseconds(
self.ptr,
&mut timeout_us as *mut _,
),
Duration::from_micros(timeout_us)
)
}
/// Set the timeout of the request. \
/// The default is 0 which indicates that the request has no timeout.
pub fn set_timeout(&mut self, timeout: Duration) -> Result<&mut Self, Error> {
triton_call!(
sys::TRITONSERVER_InferenceRequestSetTimeoutMicroseconds(
self.ptr,
timeout.as_micros() as u64,
),
self
)
}
/// Add an input to the request.\
/// `input_name`: The name of the input. \
/// `buffer`: input data containing buffer. \
/// Note: input data will be returned after the inference. Check [ResponseFuture::get_input_release] for more info.
pub fn add_input<N: AsRef<str>>(
&mut self,
input_name: N,
buffer: Buffer,
) -> Result<&mut Self, Error> {
self.add_input_inner(input_name, buffer, None::<String>, None::<Vec<i64>>)
}
/// Add an input with the specified shape to the request.\
/// `input_name`: The name of the input. \
/// `buffer`: input data containing buffer. \
/// `dims`: Dimensions of the input.\
/// Note: input data will be returned after the inference. Check [ResponseFuture::get_input_release] for more info.
pub fn add_input_with_dims<N, D>(
&mut self,
input_name: N,
buffer: Buffer,
dims: D,
) -> Result<&mut Self, Error>
where
N: AsRef<str>,
D: AsRef<[i64]>,
{
self.add_input_inner(input_name, buffer, None::<String>, Some(dims))
}
/// Add an input with the specified host policy to the request.\
/// `input_name`: The name of the input.\
/// `buffer`: input data containing buffer. \
/// `policy`: The policy name, all model instances executing with this policy will use this input buffer for execution.\
/// Note: input data will be returned after the inference. Check [ResponseFuture::get_input_release] for more info.
pub fn add_input_with_policy<N, P>(
&mut self,
input_name: N,
buffer: Buffer,
policy: P,
) -> Result<&mut Self, Error>
where
N: AsRef<str>,
P: AsRef<str>,
{
self.add_input_inner(input_name, buffer, Some(policy), None::<Vec<i64>>)
}
/// Add an input with the specified host policy and shape to the request.
/// `input_name`: The name of the input.\
/// `buffer`: input data containing buffer. \
/// `policy`: The policy name, all model instances executing with this policy will use this input buffer for execution.\
/// `dims`: Dimensions of the input.\
/// Note: input data will be returned after the inference. Check [ResponseFuture::get_input_release] for more info.
pub fn add_input_with_policy_and_dims<N, P, D>(
&mut self,
input_name: N,
buffer: Buffer,
policy: P,
dims: D,
) -> Result<&mut Self, Error>
where
N: AsRef<str>,
P: AsRef<str>,
D: AsRef<[i64]>,
{
self.add_input_inner(input_name, buffer, Some(policy), Some(dims))
}
fn add_input_inner<N, P, D>(
&mut self,
input_name: N,
buffer: Buffer,
policy: Option<P>,
dims: Option<D>,
) -> Result<&mut Self, Error>
where
N: AsRef<str>,
P: AsRef<str>,
D: AsRef<[i64]>,
{
if self.input.contains_key(input_name.as_ref()) {
return Err(Error::new(
ErrorCode::Alreadyxists,
format!(
"Request already has buffer for input \"{}\"",
input_name.as_ref()
),
));
}
let model_shape = self.get_shape(input_name.as_ref())?;
let shape = if let Some(dims) = dims {
Shape {
name: input_name.as_ref().to_string(),
datatype: model_shape.datatype,
dims: dims.as_ref().to_vec(),
}
} else {
Shape {
name: input_name.as_ref().to_string(),
datatype: model_shape.datatype,
dims: model_shape.dims.clone(),
}
};
assert_buffer_shape(&shape, &buffer, input_name.as_ref())?;
self.add_input_triton(&input_name, &shape)?;
if let Some(policy) = policy {
self.append_input_data_with_policy(input_name, &policy, buffer)?;
} else {
self.append_input_data(input_name, buffer)?;
}
Ok(self)
}
fn get_shape<N: AsRef<str>>(&self, source: N) -> Result<&Shape, Error> {
let model_name = &self.model_name;
let model = self.server.get_model(model_name)?;
match model
.inputs
.iter()
.find(|shape| shape.name == source.as_ref())
{
None => Err(Error::new(
ErrorCode::Internal,
format!("Model {model_name} has no input named: {}", source.as_ref()),
)),
Some(shape) => Ok(shape),
}
}
fn add_input_triton<I: AsRef<str>>(&self, input_name: I, input: &Shape) -> Result<(), Error> {
let name = to_cstring(input_name)?;
triton_call!(sys::TRITONSERVER_InferenceRequestAddInput(
self.ptr,
name.as_ptr(),
input.datatype as u32,
input.dims.as_ptr(),
input.dims.len() as u64,
))
}
fn append_input_data<I: AsRef<str>>(
&mut self,
input_name: I,
buffer: Buffer,
) -> Result<&mut Self, Error> {
let name = to_cstring(&input_name)?;
triton_call!(sys::TRITONSERVER_InferenceRequestAppendInputData(
self.ptr,
name.as_ptr(),
buffer.ptr,
buffer.len,
buffer.memory_type as u32,
0,
))?;
let _ = self.input.insert(input_name.as_ref().to_string(), buffer);
Ok(self)
}
fn append_input_data_with_policy<I: AsRef<str>, P: AsRef<str>>(
&mut self,
input_name: I,
policy: P,
buffer: Buffer,
) -> Result<&mut Self, Error> {
let name = to_cstring(&input_name)?;
let policy = to_cstring(policy)?;
triton_call!(
sys::TRITONSERVER_InferenceRequestAppendInputDataWithHostPolicy(
self.ptr,
name.as_ptr(),
buffer.ptr,
buffer.len,
buffer.memory_type as u32,
0,
policy.as_ptr(),
)
)?;
self.input.insert(input_name.as_ref().to_string(), buffer);
Ok(self)
}
pub(crate) fn add_outputs(&mut self) -> Result<&mut Self, Error> {
let model = self.server.get_model(&self.model_name)?;
for output in &model.outputs {
self.add_output(&output.name)?;
}
Ok(self)
}
/// Add an output request to an inference request.\
/// name: The name of the output.\
/// buffer: output data buffer that required by triton allocator.
/// Embeddings will be put in this buffer.
/// One can obtain buffer back using Response::output() or with infer_async() Error.
pub(crate) fn add_output<N: AsRef<str>>(&mut self, name: N) -> Result<&mut Self, Error> {
let output_name = to_cstring(&name)?;
triton_call!(
sys::TRITONSERVER_InferenceRequestAddRequestedOutput(self.ptr, output_name.as_ptr()),
self
)
}
}
unsafe impl<'a> Send for Request<'a> {}
impl<'a> Drop for Request<'a> {
fn drop(&mut self) {
unsafe {
sys::TRITONSERVER_InferenceRequestDelete(self.ptr);
}
}
}
fn assert_buffer_shape<N: AsRef<str>>(
shape: &Shape,
buffer: &Buffer,
source: N,
) -> Result<(), Error> {
if shape.datatype != buffer.data_type {
return Err(Error::new(
ErrorCode::InvalidArg,
format!(
"input buffer datatype {:?} missmatches model shape datatype: {:?}. input name: {}",
buffer.data_type,
shape.datatype,
source.as_ref()
),
));
}
let shape_size =
shape.dims.iter().filter(|n| **n > 0).product::<i64>() as u32 * shape.datatype.size();
if shape_size as usize > buffer.size() {
Err(Error::new(
ErrorCode::InvalidArg,
format!(
"Buffer has size: {}, that less than shape min size: {shape_size}. input name: {}",
buffer.size(),
source.as_ref()
),
))
} else {
Ok(())
}
}