1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
//! Challenges are needed for the [cross-table arguments](CrossTableArg), _i.e._,
//! [Permutation Arguments](crate::table::cross_table_argument::PermArg),
//! [Evaluation Arguments](crate::table::cross_table_argument::EvalArg), and
//! [Lookup Arguments](crate::table::cross_table_argument::LookupArg),
//! as well as for the RAM Table's Contiguity Argument.
//!
//! There are three types of challenges:
//! - **Weights**. Weights are used to linearly combine multiple elements into one element. The
//! resulting single element can then be used in a cross-table argument.
//! - **Indeterminates**. All cross-table arguments work by checking the equality of polynomials (or
//! rational functions). Through the Schwartz-Zippel lemma, this equality check can be performed
//! by evaluating the polynomials (or rational functions) in a single point. The challenges that
//! are indeterminates are exactly this evaluation point. The polynomials (or rational functions)
//! are never stored explicitly. Instead, they are directly evaluated at the point indicated by a
//! challenge of “type” `Indeterminate`, giving rise to “running products”, “running
//! evaluations”, _et cetera_.
//! - **Terminals**. The public input (respectively output) of the program is not stored in any
//! table. Instead, the terminal of the Evaluation Argument is computed directly from the
//! public input (respectively output) and the indeterminate.
use std::fmt::Debug;
use std::hash::Hash;
use std::ops::Index;
use std::ops::Range;
use std::ops::RangeInclusive;
use arbitrary::Arbitrary;
use strum::Display;
use strum::EnumCount;
use strum::EnumIter;
use twenty_first::prelude::*;
use crate::table::challenges::ChallengeId::*;
use crate::table::cross_table_argument::CrossTableArg;
use crate::table::cross_table_argument::EvalArg;
use crate::Claim;
/// A `ChallengeId` is a unique, symbolic identifier for a challenge used in Triton VM. The
/// `ChallengeId` enum works in tandem with the struct [`Challenges`], which can be
/// instantiated to hold actual challenges that can be indexed by some `ChallengeId`.
///
/// Since almost all challenges relate to the Processor Table in some form, the words “Processor
/// Table” are usually omitted from the `ChallengeId`'s name.
#[repr(usize)]
#[derive(Debug, Display, Copy, Clone, Eq, PartialEq, Hash, EnumCount, EnumIter, Arbitrary)]
pub enum ChallengeId {
/// The indeterminate for the [Evaluation Argument](EvalArg) compressing the program digest
/// into a single extension field element, _i.e._, [`CompressedProgramDigest`].
/// Relates to program attestation.
CompressProgramDigestIndeterminate,
/// The indeterminate for the [Evaluation Argument](EvalArg) with standard input.
StandardInputIndeterminate,
/// The indeterminate for the [Evaluation Argument](EvalArg) with standard output.
StandardOutputIndeterminate,
/// The indeterminate for the instruction
/// [Lookup Argument](crate::table::cross_table_argument::LookupArg)
/// between the [Processor Table](crate::table::processor_table) and the
/// [Program Table](crate::table::program_table) guaranteeing that the instructions and their
/// arguments are copied correctly.
InstructionLookupIndeterminate,
HashInputIndeterminate,
HashDigestIndeterminate,
SpongeIndeterminate,
OpStackIndeterminate,
RamIndeterminate,
JumpStackIndeterminate,
U32Indeterminate,
/// The indeterminate for the Lookup Argument between the Processor Table and all memory-like
/// tables, _i.e._, the OpStack Table, the Ram Table, and the JumpStack Table, guaranteeing
/// that all clock jump differences are directed forward.
ClockJumpDifferenceLookupIndeterminate,
/// The indeterminate for the Contiguity Argument within the Ram Table.
RamTableBezoutRelationIndeterminate,
/// A weight for linearly combining multiple elements. Applies to
/// - `Address` in the Program Table
/// - `IP` in the Processor Table
ProgramAddressWeight,
/// A weight for linearly combining multiple elements. Applies to
/// - `Instruction` in the Program Table
/// - `CI` in the Processor Table
ProgramInstructionWeight,
/// A weight for linearly combining multiple elements. Applies to
/// - `Instruction'` (_i.e._, in the next row) in the Program Table
/// - `NIA` in the Processor Table
ProgramNextInstructionWeight,
OpStackClkWeight,
OpStackIb1Weight,
OpStackPointerWeight,
OpStackFirstUnderflowElementWeight,
RamClkWeight,
RamPointerWeight,
RamValueWeight,
RamInstructionTypeWeight,
JumpStackClkWeight,
JumpStackCiWeight,
JumpStackJspWeight,
JumpStackJsoWeight,
JumpStackJsdWeight,
/// The indeterminate for compressing a [`RATE`][rate]-sized chunk of instructions into a
/// single extension field element.
/// Relates to program attestation.
///
/// Used by the evaluation argument [`PrepareChunkEvalArg`][prep] and in the Hash Table.
///
/// [rate]: twenty_first::math::tip5::RATE
/// [prep]: crate::table::table_column::ProgramExtTableColumn::PrepareChunkRunningEvaluation
ProgramAttestationPrepareChunkIndeterminate,
/// The indeterminate for the bus over which the [`RATE`][rate]-sized chunks of instructions
/// are sent. Relates to program attestation.
/// Used by the evaluation arguments [`SendChunkEvalArg`][send] and
/// [`ReceiveChunkEvalArg`][recv]. See also: [`ProgramAttestationPrepareChunkIndeterminate`].
///
/// [rate]: twenty_first::math::tip5::RATE
/// [send]: crate::table::table_column::ProgramExtTableColumn::SendChunkRunningEvaluation
/// [recv]: crate::table::table_column::HashExtTableColumn::ReceiveChunkRunningEvaluation
ProgramAttestationSendChunkIndeterminate,
HashCIWeight,
HashStateWeight0,
HashStateWeight1,
HashStateWeight2,
HashStateWeight3,
HashStateWeight4,
HashStateWeight5,
HashStateWeight6,
HashStateWeight7,
HashStateWeight8,
HashStateWeight9,
HashStateWeight10,
HashStateWeight11,
HashStateWeight12,
HashStateWeight13,
HashStateWeight14,
HashStateWeight15,
/// The indeterminate for the Lookup Argument between the Hash Table and the Cascade Table.
HashCascadeLookupIndeterminate,
/// A weight for linearly combining multiple elements. Applies to
/// - `*LkIn` in the Hash Table, and
/// - `2^16·LookInHi + LookInLo` in the Cascade Table.
HashCascadeLookInWeight,
/// A weight for linearly combining multiple elements. Applies to
/// - `*LkOut` in the Hash Table, and
/// - `2^16·LookOutHi + LookOutLo` in the Cascade Table.
HashCascadeLookOutWeight,
/// The indeterminate for the Lookup Argument between the Cascade Table and the Lookup Table.
CascadeLookupIndeterminate,
/// A weight for linearly combining multiple elements. Applies to
/// - `LkIn*` in the Cascade Table, and
/// - `LookIn` in the Lookup Table.
LookupTableInputWeight,
/// A weight for linearly combining multiple elements. Applies to
/// - `LkOut*` in the Cascade Table, and
/// - `LookOut` in the Lookup Table.
LookupTableOutputWeight,
/// The indeterminate for the public Evaluation Argument establishing correctness of the
/// Lookup Table.
LookupTablePublicIndeterminate,
U32LhsWeight,
U32RhsWeight,
U32CiWeight,
U32ResultWeight,
/// The terminal for the [`EvaluationArgument`](EvalArg) with standard input.
/// Makes use of challenge [`StandardInputIndeterminate`].
StandardInputTerminal,
/// The terminal for the [`EvaluationArgument`](EvalArg) with standard output.
/// Makes use of challenge [`StandardOutputIndeterminate`].
StandardOutputTerminal,
/// The terminal for the [`EvaluationArgument`](EvalArg) establishing correctness of the
/// [Lookup Table](crate::table::lookup_table::LookupTable).
/// Makes use of challenge [`LookupTablePublicIndeterminate`].
LookupTablePublicTerminal,
/// The digest of the program to be executed, compressed into a single extension field element.
/// The compression happens using an [`EvaluationArgument`](EvalArg) under challenge
/// [`CompressProgramDigestIndeterminate`].
/// Relates to program attestation.
CompressedProgramDigest,
}
impl ChallengeId {
pub const fn index(&self) -> usize {
*self as usize
}
}
impl From<ChallengeId> for usize {
fn from(id: ChallengeId) -> Self {
id.index()
}
}
/// The `Challenges` struct holds the challenges used in Triton VM. The concrete challenges are
/// known only at runtime. The challenges are indexed using enum [`ChallengeId`]. The `Challenges`
/// struct is essentially a thin wrapper around an array of [`XFieldElement`]s, providing
/// convenience methods.
#[derive(Debug, Clone, Arbitrary)]
pub struct Challenges {
pub challenges: [XFieldElement; Self::COUNT],
}
impl Challenges {
/// The total number of challenges used in Triton VM.
pub const COUNT: usize = ChallengeId::COUNT;
/// The number of weights to sample using the Fiat-Shamir heuristic. This number is lower
/// than the number of challenges because several challenges are not sampled, but computed
/// from publicly known values and other, sampled challenges.
///
/// Concretely:
/// - The [`StandardInputTerminal`] is computed from Triton VM's public input and the sampled
/// indeterminate [`StandardInputIndeterminate`].
/// - The [`StandardOutputTerminal`] is computed from Triton VM's public output and the sampled
/// indeterminate [`StandardOutputIndeterminate`].
/// - The [`LookupTablePublicTerminal`] is computed from the publicly known and constant
/// lookup table and the sampled indeterminate [`LookupTablePublicIndeterminate`].
/// - The [`CompressedProgramDigest`] is computed from the program to be executed and the
/// sampled indeterminate [`CompressProgramDigestIndeterminate`].
// When modifying this, be sure to add to the compile-time assertions in the
// `#[test] const fn compile_time_index_assertions() { … }`
// at the end of this file.
pub const SAMPLE_COUNT: usize = Self::COUNT - 4;
#[deprecated(since = "0.39.0", note = "Use `Self::COUNT` instead")]
pub const fn count() -> usize {
Self::COUNT
}
#[deprecated(since = "0.39.0", note = "Use `Self::SAMPLE_COUNT` instead")]
pub const fn num_challenges_to_sample() -> usize {
Self::SAMPLE_COUNT
}
pub fn new(mut challenges: Vec<XFieldElement>, claim: &Claim) -> Self {
assert_eq!(Self::SAMPLE_COUNT, challenges.len());
let compressed_digest = EvalArg::compute_terminal(
&claim.program_digest.values(),
EvalArg::default_initial(),
challenges[CompressProgramDigestIndeterminate.index()],
);
let input_terminal = EvalArg::compute_terminal(
&claim.input,
EvalArg::default_initial(),
challenges[StandardInputIndeterminate.index()],
);
let output_terminal = EvalArg::compute_terminal(
&claim.output,
EvalArg::default_initial(),
challenges[StandardOutputIndeterminate.index()],
);
let lookup_terminal = EvalArg::compute_terminal(
&tip5::LOOKUP_TABLE.map(BFieldElement::from),
EvalArg::default_initial(),
challenges[LookupTablePublicIndeterminate.index()],
);
challenges.insert(StandardInputTerminal.index(), input_terminal);
challenges.insert(StandardOutputTerminal.index(), output_terminal);
challenges.insert(LookupTablePublicTerminal.index(), lookup_terminal);
challenges.insert(CompressedProgramDigest.index(), compressed_digest);
assert_eq!(Self::COUNT, challenges.len());
let challenges = challenges.try_into().unwrap();
Self { challenges }
}
}
impl Index<usize> for Challenges {
type Output = XFieldElement;
fn index(&self, id: usize) -> &Self::Output {
&self.challenges[id]
}
}
impl Index<Range<usize>> for Challenges {
type Output = [XFieldElement];
fn index(&self, indices: Range<usize>) -> &Self::Output {
&self.challenges[indices.start..indices.end]
}
}
impl Index<RangeInclusive<usize>> for Challenges {
type Output = [XFieldElement];
fn index(&self, indices: RangeInclusive<usize>) -> &Self::Output {
&self.challenges[*indices.start()..=*indices.end()]
}
}
impl Index<ChallengeId> for Challenges {
type Output = XFieldElement;
fn index(&self, id: ChallengeId) -> &Self::Output {
&self[id.index()]
}
}
impl Index<Range<ChallengeId>> for Challenges {
type Output = [XFieldElement];
fn index(&self, indices: Range<ChallengeId>) -> &Self::Output {
&self[indices.start.index()..indices.end.index()]
}
}
impl Index<RangeInclusive<ChallengeId>> for Challenges {
type Output = [XFieldElement];
fn index(&self, indices: RangeInclusive<ChallengeId>) -> &Self::Output {
&self[indices.start().index()..=indices.end().index()]
}
}
#[cfg(test)]
pub(crate) mod tests {
use super::*;
// For testing purposes only.
impl Default for Challenges {
fn default() -> Self {
Self::placeholder(&Claim::default())
}
}
impl Challenges {
/// Stand-in challenges for use in tests. For non-interactive STARKs, use the
/// Fiat-Shamir heuristic to derive the actual challenges.
pub fn placeholder(claim: &Claim) -> Self {
let stand_in_challenges = (1..=Self::SAMPLE_COUNT)
.map(|i| xfe!([42, i as u64, 24]))
.collect();
Self::new(stand_in_challenges, claim)
}
}
#[test]
const fn compile_time_index_assertions() {
// Terminal challenges are computed from public information, such as public input or
// public output, and other challenges. Because these other challenges are used to compute
// the terminal challenges, the terminal challenges must be inserted into the challenges
// vector after the used challenges.
assert!(StandardInputIndeterminate.index() < StandardInputTerminal.index());
assert!(StandardInputIndeterminate.index() < StandardOutputTerminal.index());
assert!(StandardInputIndeterminate.index() < LookupTablePublicTerminal.index());
assert!(StandardInputIndeterminate.index() < CompressedProgramDigest.index());
assert!(StandardOutputIndeterminate.index() < StandardInputTerminal.index());
assert!(StandardOutputIndeterminate.index() < StandardOutputTerminal.index());
assert!(StandardOutputIndeterminate.index() < LookupTablePublicTerminal.index());
assert!(StandardOutputIndeterminate.index() < CompressedProgramDigest.index());
assert!(CompressProgramDigestIndeterminate.index() < StandardInputTerminal.index());
assert!(CompressProgramDigestIndeterminate.index() < StandardOutputTerminal.index());
assert!(CompressProgramDigestIndeterminate.index() < LookupTablePublicTerminal.index());
assert!(CompressProgramDigestIndeterminate.index() < CompressedProgramDigest.index());
assert!(LookupTablePublicIndeterminate.index() < StandardInputTerminal.index());
assert!(LookupTablePublicIndeterminate.index() < StandardOutputTerminal.index());
assert!(LookupTablePublicIndeterminate.index() < LookupTablePublicTerminal.index());
assert!(LookupTablePublicIndeterminate.index() < CompressedProgramDigest.index());
}
// Ensure the compile-time assertions are actually executed by the compiler.
const _: () = compile_time_index_assertions();
#[test]
fn various_challenge_indexing_operations_are_possible() {
let challenges = Challenges::placeholder(&Claim::default());
let _ = challenges[HashStateWeight0];
let _ = challenges[HashStateWeight0..HashStateWeight8];
let _ = challenges[HashStateWeight0..=HashStateWeight8];
let _ = challenges[0];
let _ = challenges[0..8];
let _ = challenges[0..=8];
}
}