trig_const/acos.rs
1/* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12/* acos(x)
13 * Method :
14 * acos(x) = pi/2 - asin(x)
15 * acos(-x) = pi/2 + asin(x)
16 * For |x|<=0.5
17 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
18 * For x>0.5
19 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
20 * = 2asin(sqrt((1-x)/2))
21 * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
22 * = 2f + (2c + 2s*z*R(z))
23 * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
24 * for f so that f+c ~ sqrt(z).
25 * For x<-0.5
26 * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
27 * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
28 *
29 * Special cases:
30 * if x is NaN, return x itself;
31 * if |x|>1, return NaN with invalid signal.
32 *
33 * Function needed: sqrt
34 */
35
36use super::sqrt;
37
38const PIO2_HI: f64 = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
39const PIO2_LO: f64 = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
40const PS0: f64 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */
41const PS1: f64 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */
42const PS2: f64 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */
43const PS3: f64 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */
44const PS4: f64 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */
45const PS5: f64 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */
46const QS1: f64 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */
47const QS2: f64 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */
48const QS3: f64 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */
49const QS4: f64 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
50
51/// Arccosine
52///
53/// ```
54/// # use trig_const::acos;
55/// # use core::f64::consts::PI;
56/// const ACOS_1: f64 = acos(1.0);
57/// assert_eq!(ACOS_1, 0.0);
58/// ```
59pub const fn acos(x: f64) -> f64 {
60 let x1p_120f = f64::from_bits(0x3870000000000000); // 0x1p-120 === 2 ^ -120
61 let z: f64;
62 let w: f64;
63 let s: f64;
64 let hx: u32 = (x.to_bits() >> 32) as u32;
65 let ix: u32 = hx & 0x7fffffff;
66 /* |x| >= 1 or nan */
67 if ix >= 0x3ff00000 {
68 let lx: u32 = x.to_bits() as u32;
69
70 if ((ix - 0x3ff00000) | lx) == 0 {
71 /* acos(1)=0, acos(-1)=pi */
72 if (hx >> 31) != 0 {
73 return 2. * PIO2_HI + x1p_120f;
74 }
75 return 0.;
76 }
77 return f64::INFINITY;
78 }
79 /* |x| < 0.5 */
80 if ix < 0x3fe00000 {
81 if ix <= 0x3c600000 {
82 /* |x| < 2**-57 */
83 return PIO2_HI + x1p_120f;
84 }
85 return PIO2_HI - (x - (PIO2_LO - x * r(x * x)));
86 }
87 /* x < -0.5 */
88 if (hx >> 31) != 0 {
89 z = (1.0 + x) * 0.5;
90 s = sqrt(z);
91 w = r(z) * s - PIO2_LO;
92 return 2. * (PIO2_HI - (s + w));
93 }
94 /* x > 0.5 */
95 z = (1.0 - x) * 0.5;
96 s = sqrt(z);
97 // Set the low 4 bytes to zero
98 let df: f64 = f64::from_bits(s.to_bits() & 0xff_ff_ff_ff_00_00_00_00);
99
100 let c: f64 = (z - df * df) / (s + df);
101 w = r(z) * s + c;
102 2. * (df + w)
103}
104
105const fn r(z: f64) -> f64 {
106 let p: f64 = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z * (PS4 + z * PS5)))));
107 let q: f64 = 1.0 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
108 p / q
109}