1#![doc = include_str!("../README.md")]
2#![no_std]
3#![forbid(unsafe_code)]
4#![allow(clippy::excessive_precision)]
5
6mod acos;
7mod acosh;
8mod asin;
9mod asinh;
10mod atan;
11mod atan2;
12mod atanh;
13mod cos;
14mod exp;
15mod floor;
16mod k_cos;
17mod k_sin;
18pub(crate) mod k_tan;
19mod ln;
20pub(crate) mod log1p;
21mod pow;
22mod rem_pio2;
23mod rem_pio2_large;
24pub(crate) mod scalbn;
25mod sin;
26mod tan;
27pub use acos::acos;
28pub use acosh::acosh;
29pub use asin::asin;
30pub use asinh::asinh;
31pub use atan::atan;
32pub use atan2::atan2;
33pub use atanh::atanh;
34pub use cos::cos;
35pub use exp::exp;
36pub use floor::floor;
37pub use ln::ln;
38pub use pow::pow;
39pub use sin::sin;
40pub use tan::tan;
41
42const TAYLOR_SERIES_SUMS: usize = 16;
44
45pub const fn cot(x: f64) -> f64 {
55 let sin_calc = sin(x);
56 if sin_calc == 0.0 {
57 f64::INFINITY
58 } else {
59 cos(x) / sin_calc
60 }
61}
62
63pub const fn sec(x: f64) -> f64 {
72 let cos_calc = cos(x);
73 if cos_calc == 0.0 {
74 f64::INFINITY
75 } else {
76 1.0 / cos_calc
77 }
78}
79
80pub const fn csc(x: f64) -> f64 {
89 let sin_calc = sin(x);
90 if sin_calc == 0.0 {
91 f64::INFINITY
92 } else {
93 1.0 / sin_calc
94 }
95}
96
97pub const fn sinh(x: f64) -> f64 {
105 (exp(x) - exp(-x)) / 2.0
106}
107
108pub const fn cosh(x: f64) -> f64 {
116 (exp(x) + exp(-x)) / 2.0
117}
118
119pub const fn expi(x: f64, mut pow: isize) -> f64 {
121 let mut o = 1.0;
122
123 while pow > 0 {
124 o *= x;
125 pow -= 1;
126 }
127 while pow < 0 {
128 o /= x;
129 pow += 1;
130 }
131
132 o
133}
134
135pub const fn factorial(mut x: f64) -> f64 {
137 if x == 0.0 || x == 1.0 {
138 1.0
139 } else {
140 let mut s = 1.0;
141 while x > 1.0 {
142 s *= x;
143 x -= 1.0;
144 }
145 s
146 }
147}
148
149pub const fn sqrt(x: f64) -> f64 {
151 if x.is_nan() || x < 0.0 {
152 return f64::NAN;
153 } else if x.is_infinite() || x == 0.0 {
154 return x;
155 }
156
157 let mut current_guess = 1.0;
159
160 let mut i = 0;
161 while i < TAYLOR_SERIES_SUMS {
162 current_guess = 0.5 * (current_guess + x / current_guess);
163 i += 1;
164 }
165
166 current_guess
167}
168
169pub const fn fabs(x: f64) -> f64 {
170 if x > 0.0 {
171 x
172 } else {
173 -x
174 }
175}
176
177const fn with_set_high_word(f: f64, hi: u32) -> f64 {
178 let mut tmp = f.to_bits();
179 tmp &= 0x00000000_ffffffff;
180 tmp |= (hi as u64) << 32;
181 f64::from_bits(tmp)
182}
183const fn with_set_low_word(f: f64, lo: u32) -> f64 {
184 let mut tmp = f.to_bits();
185 tmp &= 0xffffffff_00000000;
186 tmp |= lo as u64;
187 f64::from_bits(tmp)
188}
189const fn get_high_word(x: f64) -> u32 {
190 (x.to_bits() >> 32) as u32
191}
192
193const fn get_low_word(x: f64) -> u32 {
194 x.to_bits() as u32
195}
196
197#[cfg(test)]
198mod tests {
199 use core::f64::consts::{E, PI};
200
201 use crate::{cos, cosh, exp, expi, factorial, ln, sin, sinh, sqrt};
202
203 macro_rules! float_eq {
204 ($lhs:expr, $rhs:expr) => {
205 assert!(($lhs - $rhs).abs() < 0.0001, "lhs: {}, rhs: {}", $lhs, $rhs);
206 };
207 }
208
209 #[test]
210 fn test_factorial() {
211 assert_eq!(factorial(0.0), 1.0);
212 assert_eq!(factorial(1.0), 1.0);
213 assert_eq!(factorial(2.0), 2.0);
214 assert_eq!(factorial(3.0), 6.0);
215 assert_eq!(factorial(4.0), 24.0);
216 assert_eq!(factorial(5.0), 120.0);
217 }
218
219 #[test]
220 fn test_expi() {
221 assert_eq!(expi(2.0, 0), 1.0);
222 assert_eq!(expi(2.0, 4), 16.0);
223 assert_eq!(expi(2.0, 5), 32.0);
224 assert_eq!(expi(3.0, 3), 27.0);
225 }
226
227 #[test]
228 fn test_exp() {
229 float_eq!(exp(0.0), 1.0);
230 float_eq!(exp(1.0), E);
231 }
232
233 #[test]
234 fn test_sqrt() {
235 float_eq!(sqrt(0.0), 0.0);
236 float_eq!(sqrt(1.0), 1.0);
237 float_eq!(sqrt(4.0), 2.0);
238 float_eq!(sqrt(9.0), 3.0);
239 float_eq!(sqrt(16.0), 4.0);
240 float_eq!(sqrt(25.0), 5.0);
241 }
242
243 #[test]
244 fn test_cos() {
245 float_eq!(cos(0.0), 0.0_f64.cos());
246 float_eq!(cos(1.0), 1.0_f64.cos());
247 float_eq!(cos(PI), PI.cos());
248 float_eq!(cos(PI * 8.0), (PI * 8.0).cos());
249 }
250
251 #[test]
252 fn test_sin() {
253 float_eq!(sin(0.0), 0.0_f64.sin());
254 float_eq!(sin(1.0), 1.0_f64.sin());
255 float_eq!(sin(PI), PI.sin());
256 float_eq!(sin(PI * 8.0), (PI * 8.0).sin());
257 }
258
259 #[test]
260 fn test_sinh() {
261 for x in [0.0, 0.5, 1.0, 1.5, 2.0, 2.5] {
262 float_eq!(sinh(x), x.sinh());
263 }
264 }
265
266 #[test]
267 fn test_cosh() {
268 for x in [0.0, 0.5, 1.0, 1.5, 2.0, 2.5] {
269 float_eq!(cosh(x), x.cosh());
270 }
271 }
272
273 #[test]
274 fn test_ln() {
275 float_eq!(ln(1.0), 1.0_f64.ln());
278 float_eq!(ln(2.0), 2.0_f64.ln());
279 float_eq!(ln(10.0), 10.0_f64.ln());
280 float_eq!(ln(1_000.0), 1_000.0_f64.ln());
281 }
282}