1#![doc = include_str!("../README.md")]
2#![no_std]
3#![forbid(unsafe_code)]
4#![allow(clippy::excessive_precision)]
5#![allow(clippy::approx_constant)]
6
7mod acos;
8mod acosh;
9mod asin;
10mod asinh;
11mod atan;
12mod atan2;
13mod atanh;
14mod cos;
15mod exp;
16mod floor;
17mod k_cos;
18mod k_sin;
19pub(crate) mod k_tan;
20mod ln;
21pub(crate) mod log1p;
22mod pow;
23mod rem_pio2;
24mod rem_pio2_large;
25pub(crate) mod scalbn;
26mod sin;
27mod tan;
28pub use acos::acos;
29pub use acosh::acosh;
30pub use asin::asin;
31pub use asinh::asinh;
32pub use atan::atan;
33pub use atan2::atan2;
34pub use atanh::atanh;
35pub use cos::cos;
36pub use exp::exp;
37pub use floor::floor;
38pub use ln::ln;
39pub use pow::pow;
40pub use sin::sin;
41pub use tan::tan;
42
43const TAYLOR_SERIES_SUMS: usize = 16;
45
46pub const fn cot(x: f64) -> f64 {
56 let sin_calc = sin(x);
57 if sin_calc == 0.0 {
58 f64::INFINITY
59 } else {
60 cos(x) / sin_calc
61 }
62}
63
64pub const fn sec(x: f64) -> f64 {
73 let cos_calc = cos(x);
74 if cos_calc == 0.0 {
75 f64::INFINITY
76 } else {
77 1.0 / cos_calc
78 }
79}
80
81pub const fn csc(x: f64) -> f64 {
90 let sin_calc = sin(x);
91 if sin_calc == 0.0 {
92 f64::INFINITY
93 } else {
94 1.0 / sin_calc
95 }
96}
97
98pub const fn sinh(x: f64) -> f64 {
106 (exp(x) - exp(-x)) / 2.0
107}
108
109pub const fn cosh(x: f64) -> f64 {
117 (exp(x) + exp(-x)) / 2.0
118}
119
120pub const fn expi(x: f64, mut pow: isize) -> f64 {
122 let mut o = 1.0;
123
124 while pow > 0 {
125 o *= x;
126 pow -= 1;
127 }
128 while pow < 0 {
129 o /= x;
130 pow += 1;
131 }
132
133 o
134}
135
136pub const fn factorial(mut x: f64) -> f64 {
138 if x == 0.0 || x == 1.0 {
139 1.0
140 } else {
141 let mut s = 1.0;
142 while x > 1.0 {
143 s *= x;
144 x -= 1.0;
145 }
146 s
147 }
148}
149
150pub const fn sqrt(x: f64) -> f64 {
152 if x.is_nan() || x < 0.0 {
153 return f64::NAN;
154 } else if x.is_infinite() || x == 0.0 {
155 return x;
156 }
157
158 let mut current_guess = 1.0;
160
161 let mut i = 0;
162 while i < TAYLOR_SERIES_SUMS {
163 current_guess = 0.5 * (current_guess + x / current_guess);
164 i += 1;
165 }
166
167 current_guess
168}
169
170pub const fn fabs(x: f64) -> f64 {
171 if x > 0.0 {
172 x
173 } else {
174 -x
175 }
176}
177
178const fn with_set_high_word(f: f64, hi: u32) -> f64 {
179 let mut tmp = f.to_bits();
180 tmp &= 0x00000000_ffffffff;
181 tmp |= (hi as u64) << 32;
182 f64::from_bits(tmp)
183}
184const fn with_set_low_word(f: f64, lo: u32) -> f64 {
185 let mut tmp = f.to_bits();
186 tmp &= 0xffffffff_00000000;
187 tmp |= lo as u64;
188 f64::from_bits(tmp)
189}
190const fn get_high_word(x: f64) -> u32 {
191 (x.to_bits() >> 32) as u32
192}
193
194const fn get_low_word(x: f64) -> u32 {
195 x.to_bits() as u32
196}
197
198#[cfg(test)]
199mod tests {
200 use core::f64::consts::{E, PI};
201
202 use crate::{cos, cosh, exp, expi, factorial, ln, sin, sinh, sqrt};
203
204 macro_rules! float_eq {
205 ($lhs:expr, $rhs:expr) => {
206 assert!(($lhs - $rhs).abs() < 0.0001, "lhs: {}, rhs: {}", $lhs, $rhs);
207 };
208 }
209
210 #[test]
211 fn test_factorial() {
212 assert_eq!(factorial(0.0), 1.0);
213 assert_eq!(factorial(1.0), 1.0);
214 assert_eq!(factorial(2.0), 2.0);
215 assert_eq!(factorial(3.0), 6.0);
216 assert_eq!(factorial(4.0), 24.0);
217 assert_eq!(factorial(5.0), 120.0);
218 }
219
220 #[test]
221 fn test_expi() {
222 assert_eq!(expi(2.0, 0), 1.0);
223 assert_eq!(expi(2.0, 4), 16.0);
224 assert_eq!(expi(2.0, 5), 32.0);
225 assert_eq!(expi(3.0, 3), 27.0);
226 }
227
228 #[test]
229 fn test_exp() {
230 float_eq!(exp(0.0), 1.0);
231 float_eq!(exp(1.0), E);
232 }
233
234 #[test]
235 fn test_sqrt() {
236 float_eq!(sqrt(0.0), 0.0);
237 float_eq!(sqrt(1.0), 1.0);
238 float_eq!(sqrt(4.0), 2.0);
239 float_eq!(sqrt(9.0), 3.0);
240 float_eq!(sqrt(16.0), 4.0);
241 float_eq!(sqrt(25.0), 5.0);
242 }
243
244 #[test]
245 fn test_cos() {
246 float_eq!(cos(0.0), 0.0_f64.cos());
247 float_eq!(cos(1.0), 1.0_f64.cos());
248 float_eq!(cos(PI), PI.cos());
249 float_eq!(cos(PI * 8.0), (PI * 8.0).cos());
250 }
251
252 #[test]
253 fn test_sin() {
254 float_eq!(sin(0.0), 0.0_f64.sin());
255 float_eq!(sin(1.0), 1.0_f64.sin());
256 float_eq!(sin(PI), PI.sin());
257 float_eq!(sin(PI * 8.0), (PI * 8.0).sin());
258 }
259
260 #[test]
261 fn test_sinh() {
262 for x in [0.0, 0.5, 1.0, 1.5, 2.0, 2.5] {
263 float_eq!(sinh(x), x.sinh());
264 }
265 }
266
267 #[test]
268 fn test_cosh() {
269 for x in [0.0, 0.5, 1.0, 1.5, 2.0, 2.5] {
270 float_eq!(cosh(x), x.cosh());
271 }
272 }
273
274 #[test]
275 fn test_ln() {
276 float_eq!(ln(1.0), 1.0_f64.ln());
279 float_eq!(ln(2.0), 2.0_f64.ln());
280 float_eq!(ln(10.0), 10.0_f64.ln());
281 float_eq!(ln(1_000.0), 1_000.0_f64.ln());
282 }
283}