trig_const/exp.rs
1/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */
2/*
3 * ====================================================
4 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11/* exp(x)
12 * Returns the exponential of x.
13 *
14 * Method
15 * 1. Argument reduction:
16 * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
17 * Given x, find r and integer k such that
18 *
19 * x = k*ln2 + r, |r| <= 0.5*ln2.
20 *
21 * Here r will be represented as r = hi-lo for better
22 * accuracy.
23 *
24 * 2. Approximation of exp(r) by a special rational function on
25 * the interval [0,0.34658]:
26 * Write
27 * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
28 * We use a special Remez algorithm on [0,0.34658] to generate
29 * a polynomial of degree 5 to approximate R. The maximum error
30 * of this polynomial approximation is bounded by 2**-59. In
31 * other words,
32 * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
33 * (where z=r*r, and the values of P1 to P5 are listed below)
34 * and
35 * | 5 | -59
36 * | 2.0+P1*z+...+P5*z - R(z) | <= 2
37 * | |
38 * The computation of exp(r) thus becomes
39 * 2*r
40 * exp(r) = 1 + ----------
41 * R(r) - r
42 * r*c(r)
43 * = 1 + r + ----------- (for better accuracy)
44 * 2 - c(r)
45 * where
46 * 2 4 10
47 * c(r) = r - (P1*r + P2*r + ... + P5*r ).
48 *
49 * 3. Scale back to obtain exp(x):
50 * From step 1, we have
51 * exp(x) = 2^k * exp(r)
52 *
53 * Special cases:
54 * exp(INF) is INF, exp(NaN) is NaN;
55 * exp(-INF) is 0, and
56 * for finite argument, only exp(0)=1 is exact.
57 *
58 * Accuracy:
59 * according to an error analysis, the error is always less than
60 * 1 ulp (unit in the last place).
61 *
62 * Misc. info.
63 * For IEEE double
64 * if x > 709.782712893383973096 then exp(x) overflows
65 * if x < -745.133219101941108420 then exp(x) underflows
66 */
67
68use super::scalbn;
69
70const HALF: [f64; 2] = [0.5, -0.5];
71const LN2HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
72const LN2LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
73const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
74const P1: f64 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */
75const P2: f64 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */
76const P3: f64 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */
77const P4: f64 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */
78const P5: f64 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
79
80/// Exponential, base *e* (f64)
81///
82/// Calculate the exponential of `x`, that is, *e* raised to the power `x`
83/// (where *e* is the base of the natural system of logarithms, approximately 2.71828).
84pub const fn exp(mut x: f64) -> f64 {
85 let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023
86
87 let hi: f64;
88 let lo: f64;
89 let k: i32;
90 let mut hx: u32;
91
92 hx = (x.to_bits() >> 32) as u32;
93 let sign = (hx >> 31) as i32;
94 hx &= 0x7fffffff; /* high word of |x| */
95
96 /* special cases */
97 if hx >= 0x4086232b {
98 /* if |x| >= 708.39... */
99 if x.is_nan() {
100 return x;
101 }
102 if x > 709.782712893383973096 {
103 /* overflow if x!=inf */
104 x *= x1p1023;
105 return x;
106 }
107 if x < -708.39641853226410622 {
108 /* underflow if x!=-inf */
109 if x < -745.13321910194110842 {
110 return 0.;
111 }
112 }
113 }
114
115 /* argument reduction */
116 if hx > 0x3fd62e42 {
117 /* if |x| > 0.5 ln2 */
118 if hx >= 0x3ff0a2b2 {
119 /* if |x| >= 1.5 ln2 */
120 k = (INVLN2 * x + HALF[sign as usize]) as i32;
121 } else {
122 k = 1 - sign - sign;
123 }
124 hi = x - k as f64 * LN2HI; /* k*ln2hi is exact here */
125 lo = k as f64 * LN2LO;
126 x = hi - lo;
127 } else if hx > 0x3e300000 {
128 /* if |x| > 2**-28 */
129 k = 0;
130 hi = x;
131 lo = 0.;
132 } else {
133 /* inexact if x!=0 */
134 return 1. + x;
135 }
136
137 /* x is now in primary range */
138 let xx = x * x;
139 let c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5))));
140 let y = 1. + (x * c / (2. - c) - lo + hi);
141 if k == 0 {
142 y
143 } else {
144 scalbn::scalbn(y, k)
145 }
146}