trig_const/atan2.rs
1/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2.c */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunSoft, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 *
12 */
13/* atan2(y,x)
14 * Method :
15 * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
16 * 2. Reduce x to positive by (if x and y are unexceptional):
17 * ARG (x+iy) = arctan(y/x) ... if x > 0,
18 * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
19 *
20 * Special cases:
21 *
22 * ATAN2((anything), NaN ) is NaN;
23 * ATAN2(NAN , (anything) ) is NaN;
24 * ATAN2(+-0, +(anything but NaN)) is +-0 ;
25 * ATAN2(+-0, -(anything but NaN)) is +-pi ;
26 * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
27 * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
28 * ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
29 * ATAN2(+-INF,+INF ) is +-pi/4 ;
30 * ATAN2(+-INF,-INF ) is +-3pi/4;
31 * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
32 *
33 * Constants:
34 * The hexadecimal values are the intended ones for the following
35 * constants. The decimal values may be used, provided that the
36 * compiler will convert from decimal to binary accurately enough
37 * to produce the hexadecimal values shown.
38 */
39use core::f64::consts::PI;
40
41use crate::{atan, fabs};
42
43/// Arctan2
44///
45/// ```
46/// # use trig_const::atan2;
47/// # use core::f64::consts::PI;
48/// # fn float_eq(lhs: f64, rhs: f64) { assert!((lhs - rhs).abs() < 0.0001, "lhs: {}, rhs: {}", lhs, rhs); }
49/// const ATAN2_0_1: f64 = atan2(0.0, 1.0);
50/// float_eq(ATAN2_0_1, 0.0);
51/// ```
52pub const fn atan2(y: f64, x: f64) -> f64 {
53 const PI_LO: f64 = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
54 if x.is_nan() || y.is_nan() {
55 return x + y;
56 }
57 let mut ix = (x.to_bits() >> 32) as u32;
58 let lx = x.to_bits() as u32;
59 let mut iy = (y.to_bits() >> 32) as u32;
60 let ly = y.to_bits() as u32;
61 if ((ix.wrapping_sub(0x3ff00000)) | lx) == 0 {
62 /* x = 1.0 */
63 return atan(y);
64 }
65 let m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
66 ix &= 0x7fffffff;
67 iy &= 0x7fffffff;
68
69 /* when y = 0 */
70 if (iy | ly) == 0 {
71 return match m {
72 0 | 1 => y, /* atan(+-0,+anything)=+-0 */
73 2 => PI, /* atan(+0,-anything) = PI */
74 _ => -PI, /* atan(-0,-anything) =-PI */
75 };
76 }
77 /* when x = 0 */
78 if (ix | lx) == 0 {
79 return if m & 1 != 0 { -PI / 2.0 } else { PI / 2.0 };
80 }
81 /* when x is INF */
82 if ix == 0x7ff00000 {
83 if iy == 0x7ff00000 {
84 return match m {
85 0 => PI / 4.0, /* atan(+INF,+INF) */
86 1 => -PI / 4.0, /* atan(-INF,+INF) */
87 2 => 3.0 * PI / 4.0, /* atan(+INF,-INF) */
88 _ => -3.0 * PI / 4.0, /* atan(-INF,-INF) */
89 };
90 } else {
91 return match m {
92 0 => 0.0, /* atan(+...,+INF) */
93 1 => -0.0, /* atan(-...,+INF) */
94 2 => PI, /* atan(+...,-INF) */
95 _ => -PI, /* atan(-...,-INF) */
96 };
97 }
98 }
99 /* |y/x| > 0x1p64 */
100 if ix.wrapping_add(64 << 20) < iy || iy == 0x7ff00000 {
101 return if m & 1 != 0 { -PI / 2.0 } else { PI / 2.0 };
102 }
103
104 /* z = atan(|y/x|) without spurious underflow */
105 let z = if (m & 2 != 0) && iy.wrapping_add(64 << 20) < ix {
106 /* |y/x| < 0x1p-64, x<0 */
107 0.0
108 } else {
109 atan(fabs(y / x))
110 };
111 match m {
112 0 => z, /* atan(+,+) */
113 1 => -z, /* atan(-,+) */
114 2 => PI - (z - PI_LO), /* atan(+,-) */
115 _ => (z - PI_LO) - PI, /* atan(-,-) */
116 }
117}