1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
use super::*;
use ptrplus::AsPtr;
use std::{marker::PhantomPinned, ptr::NonNull};

/// Helper struct to build a [`Tree`] of [`Node`]s.
///
/// ### Examples
/// Can be used as a [Builder Pattern](https://rust-unofficial.github.io/patterns/patterns/creational/builder.html),
/// or something similar, but by assigning the fields.
///
/// ```
/// # use tree_struct::{Node, NodeBuilder};
/// let tree1 = Node::builder("parent")
///     .child(Node::builder("child a"))
///     .child(Node::builder("child b")
///         .child(Node::builder("child c")))
///     .build();
///
/// // Or:
///
/// let tree2 = NodeBuilder {
///     content: "parent",
///     children: vec![
///         NodeBuilder {
///             content: "child a",
///             children: vec![]
///         },
///         NodeBuilder {
///             content: "child b",
///             children: vec![
///                 NodeBuilder {
///                     content: "child c",
///                     children: vec![]
///                 }
///             ]
///         },
///     ],
/// }.build();
///
/// assert_eq!(tree1, tree2);
/// ```
#[derive(Debug, Default)]
pub struct NodeBuilder<T> {
    pub content: T,
    pub children: Vec<Self>,
}
impl<T> NodeBuilder<T> {
    /// New [`NodeBuilder`] using [Builder Pattern](https://rust-unofficial.github.io/patterns/patterns/creational/builder.html).
    pub fn new(content: T) -> Self {
        NodeBuilder {
            content,
            children: vec![],
        }
    }
    pub fn child(mut self, child: Self) -> Self {
        self.children.push(child);
        self
    }

    /// Create a new [`Tree`] from nodes with **children** and **content**.
    /// The children will be made into [`Pin`]ned [`Node`]s with the proper **parent**.
    pub fn build(self) -> Tree<T> {
        let mut root = Box::pin(Node {
            content: self.content,
            parent: None,
            children: vec![],
            _pin: PhantomPinned,
        });

        unsafe { root.as_mut().get_unchecked_mut() }.children =
            Self::build_children(root.ptr(), self.children);

        Tree { root }
    }
    fn build_children(parent: Parent<Node<T>>, children: Vec<Self>) -> Vec<Owned<Node<T>>> {
        children
            .into_iter()
            .map(|builder| {
                let mut child = Box::pin(Node {
                    content: builder.content,
                    parent: Some(parent),
                    children: vec![],
                    _pin: PhantomPinned,
                });

                unsafe { child.as_mut().get_unchecked_mut() }.children =
                    Self::build_children(child.ptr(), builder.children);

                child
            })
            .collect()
    }
}

/// A [`Node`] has 1 [`parent`](Self::parent()) and multiple [`children`](Self::children()).
/// It also stores [`content`](Self::content) of type **`T`**.
///
/// A Node is [`heap-allocated`](Box) and [`pinned`](Pin) to allow storing a reference to the parent (Node is a *self referential struct*)
/// without the data of said parent being moved.
/// The pointer to the parent must be valid for the lifetime of the Node that holds the pointer.
///
/// Therefore, in theory, a *stack-allocated unpinned* Node should not exist, but that is ok as long as the Node has *no children*.
/// The current implementation of the methods allows asserting that such Node has no children
/// because [`adding children`](Self::append_child()) (i.e. using a *mutable Node*) requires it to be **[`Pin`]ned**.
/// A user can still use [`std::pin::pin!`] on a *stack-allocated* Node and add children to it,
/// but the Node *can't be moved*, and its children are dropped along with it,
/// so the pointer it's children hold **remains valid for their lifetimes**.
///
/// This allows the Node struct to implement traits that require returning a *stack-allocated* Node (e.g. [`Default`] and [`Clone`]).
/// However, it is recommended to convert the returned [`Node`] into a [`Tree`] using `Tree::from()` or `Node::into()` as an "ez mode"
/// for getting rid of compiler errors that are caused by trying to use `&mut Node` or trying to move it.
pub struct Node<T> {
    pub content: T,
    parent: Option<Parent<Self>>,
    children: Vec<Owned<Self>>,
    _pin: PhantomPinned,
}
impl<T> Node<T> {
    #[inline]
    pub fn builder(content: T) -> NodeBuilder<T> {
        NodeBuilder::new(content)
    }

    /// Get an *immutable reference* to the `parent` [`Node`] of `self`.
    /// To get a *mutable reference*,
    /// call [`crate::Tree::borrow_descendant()`] from the owner [`Tree`] with `self.parent().ptr()`.
    pub fn parent(&self) -> Option<&Self> {
        self.parent.map(|p| unsafe { p.as_ref() })
    }
    /// Holds references to each **child**.
    /// /// To get a *mutable reference* to one of the **children**,
    /// call [`crate::Tree::borrow_descendant()`] from the owner [`Tree`] with `self.parent().ptr()`.
    pub fn children(&self) -> Box<[&Self]> {
        self.children
            .iter()
            .map(|child| child.as_ref().get_ref())
            .collect()
    }

    /// A [`Node`] is a **descendant** of another [`Node`] if:
    /// 1. The two [`Node`]s are not the same ([`std::ptr::eq()`]).
    /// 2. Looking up the [`Tree`] from `other`, `self` is found to be one of `other`'s ancestors. (Not recursive).
    fn is_descendant(&self, other: NonNull<Self>) -> bool {
        if self.is_same_as(other) {
            return false;
        }

        let mut ancestor = unsafe { other.as_ref() }.parent();

        while let Some(node) = ancestor {
            if self.is_same_as(node) {
                return true;
            }
            ancestor = node.parent();
        }

        false
    }
    fn find_self_next<'a>(&self, iter: impl Iterator<Item = &'a Owned<Self>>) -> Option<&'a Self> {
        let mut iter = iter.map(|sib| sib.as_ref().get_ref());
        iter.find(|sib| self.is_same_as(*sib));
        iter.next()
    }

    /// Returns the [`Node`] immediately following this one in the **parent**'s [`children`](Node::children).
    /// Otherwise returns [`None`] if `self` has no **parent**, or if it is the *last* child of the **parent**.
    pub fn next_sibling(&self) -> Option<&Self> {
        self.find_self_next(self.parent()?.children.iter())
    }
    /// Returns the [`Node`] immediately preceeding this one in the **parent**'s [`children`](Node::children).
    /// Otherwise returns [`None`] if `self` has no **parent**, or if it is the *first* child of the **parent**.
    pub fn prev_sibling(&self) -> Option<&Self> {
        self.find_self_next(self.parent()?.children.iter().rev())
    }

    /// Pushes the **child** to the end of **self**'s *children*.
    /// Also see [`Self::insert_child()`].
    pub fn append_child(self: Pin<&mut Self>, mut child: Tree<T>) {
        // Compiler ensures `self != child.root`.
        unsafe {
            let this = self.get_unchecked_mut();
            child.root_mut().get_unchecked_mut().parent = Some(NonNull::new_unchecked(this));
            this.children.push(child.root)
        }
    }
    /// Inserts the **child** to **self**'s *children* at some index.
    /// Also see [`Self::append_child()`].
    pub fn insert_child(self: Pin<&mut Self>, mut child: Tree<T>, index: usize) {
        // Compiler ensures `self != child.root`.
        unsafe {
            let this = self.get_unchecked_mut();
            child.root_mut().get_unchecked_mut().parent = Some(NonNull::new_unchecked(this));
            this.children.insert(index, child.root)
        }
    }

    /// See [`crate::Tree::detach_descendant()`].
    /// TODO: Don't know if should make it public.
    ///
    /// **descendant** does not have to be `mut`.
    /// It should be enough to assert that the whole [`Tree`] is `mut`, so by extension the **descendant** is also `mut`.
    pub(super) fn detach_descendant(self: Pin<&mut Self>, descendant: NonNull<Self>) -> Option<Tree<T>> {
        if !self.is_descendant(descendant) {
            return None;
        }

        let parent = unsafe { descendant.as_ref().parent.unwrap().as_mut() };

        // Find the index of **descendant** to remove it from its parent's children list
        let index = parent
            .children
            .iter()
            .position(|child| descendant.as_ptr() == child.ptr().as_ptr())
            .expect("Node is not found in its parent");

        // If children is not UnsafeCell, use std::mem::transmute(parent.children.remove(index)).
        let mut root = parent.children.remove(index);
        unsafe { root.as_mut().get_unchecked_mut() }.parent = None;
        Some(Tree { root })
    }

    /// See [`crate::Tree::borrow_descendant()`].
    /// TODO: Don't know if should make it public.
    ///
    /// **descendant** does not have to be `mut`.
    /// It should be enough to assert that the whole [`Tree`] is `mut`, so by extension the **descendant** is also `mut`.
    pub(super) fn borrow_descendant(self: Pin<&mut Self>, descendant: NonNull<Self>) -> Option<Pin<&mut Self>> {
        if self.is_descendant(descendant) {
            Some(unsafe { Pin::new_unchecked(&mut *descendant.as_ptr()) })
        } else {
            None
        }
    }

    #[inline]
    /// Iterate over all the [`Node`]s of the *subtree* (including `self`) using **Breadth-First Search**.
    pub fn iter_bfs(&self) -> IterBFS<T> {
        IterBFS::new(self)
    }
    #[inline]
    /// Iterate over all the [`Node`]s of the *subtree* (including `self`) using **Depth-First Search**.
    pub fn iter_dfs(&self) -> IterDFS<T> {
        IterDFS::new(self)
    }

    #[inline]
    /// Whether two [`Node`]s are the same (that is, they reference the same object).
    pub fn is_same_as(&self, other: impl AsPtr<Raw = Self>) -> bool {
        std::ptr::eq(self, other.as_ptr())
    }
    #[inline]
    /// Get a *[`NonNull`] pointer* for **self**, which should only be treated as a `*const Self`.
    /// Useful for [`Tree::detach_descendant`] and [`Tree::borrow_descendant`].
    pub fn ptr(&self) -> NonNull<Self> {
        NonNull::from(self)
    }
}

impl<T: Default> Default for Node<T> {
    /// Creates a Node with the Default content.
    /// Converting the returned Node to a [`Tree`] is recommended.
    fn default() -> Self {
        Self {
            content: T::default(),
            parent: None,
            children: vec![],
            _pin: PhantomPinned,
        }
    }
}

impl<T: Clone> Clone for Node<T> {
    /// Copies the [`Node`]'s [`content`](Node::content), but not its [`children`](Node::children).
    /// The resulting cloned [`Node`] will have no **parent** or **children**.
    ///
    /// Converting the returned Node to a [`Tree`] is recommended.
    ///
    /// For a method that clones the [`Node`] *and* its subtree, see [`Node::clone_deep`].
    fn clone(&self) -> Self {
        Self {
            content: self.content.clone(),
            parent: None,
            children: vec![],
            _pin: PhantomPinned,
        }
    }
}
impl<T: Clone> Node<T> {
    /// Copies the [`Node`]'s [`content`](Node::content) and its [`children`](Node::children) recursively.
    /// The resulting cloned [`Node`] will have no **parent**.
    ///
    /// For a method that clones the [`Node`] but *not* its subtree, see [`Node::clone`].
    pub fn clone_deep(&self) -> Tree<T> {
        let mut root = Box::pin(self.clone());

        unsafe { root.as_mut().get_unchecked_mut() }.children =
            self.clone_children_deep(root.ptr());

        Tree { root }
    }
    fn clone_children_deep(&self, parent: Parent<Self>) -> Vec<Owned<Self>> {
        self.children
            .iter()
            .map(|node| {
                let mut child = Box::pin(node.as_ref().get_ref().clone());
                let mut_child = unsafe { child.as_mut().get_unchecked_mut() };
                mut_child.parent = Some(parent);
                mut_child.children = node.clone_children_deep(mut_child.ptr());
                child
            })
            .collect()
    }
}

impl<T: Debug> Node<T> {
    /// [`Debug`] the entire subtree (`self` and its **children**).
    #[inline]
    pub fn debug_tree(&self) -> DebugTree<T> {
        DebugTree { root: self }
    }
}
impl<T: Debug> Debug for Node<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Node")
            .field("content", &self.content)
            .field(
                "children",
                &self
                    .children()
                    .iter()
                    .map(|c| &c.content)
                    .collect::<Box<_>>(),
            )
            .finish()
    }
}

impl<T: PartialEq> PartialEq for Node<T> {
    fn eq(&self, other: &Self) -> bool {
        self.content == other.content
    }
}
impl<T: Eq> Eq for Node<T> {}