1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
// -*- coding: utf-8 -*-
// ------------------------------------------------------------------------------------------------
// Copyright © 2021, stack-graphs authors.
// Licensed under either of Apache License, Version 2.0, or MIT license, at your option.
// Please see the LICENSE-APACHE or LICENSE-MIT files in this distribution for license details.
// ------------------------------------------------------------------------------------------------
//! This crate lets you construct [stack graphs][] using tree-sitter's [graph construction DSL][].
//! The graph DSL lets you construct arbitrary graph structures from the parsed syntax tree of a
//! source file. If you construct a graph using the vocabulary of attributes described below, then
//! the result of executing the graph DSL will be a valid stack graph, which we can then use for
//! name binding lookups.
//!
//! ## Prerequisites
//!
//! [stack graphs]: https://docs.rs/stack-graphs/*/
//! [graph construction DSL]: https://docs.rs/tree-sitter-graph/*/
//!
//! To process a particular source language, you will first need a tree-sitter grammar for that
//! language. There are already tree-sitter grammars [available][] for many languages. If you do
//! not have a tree-sitter grammar for your language, you will need to create that first. (Check
//! out the tree-sitter [discussion forum][] if you have questions or need pointers on how to do
//! that.)
//!
//! [available]: https://tree-sitter.github.io/tree-sitter/#available-parsers
//! [discussion forum]: https://github.com/tree-sitter/tree-sitter/discussions
//!
//! You will then need to create _stack graph construction rules_ for your language. These rules
//! are implemented using tree-sitter's [graph construction DSL][]. They define the particular
//! stack graph nodes and edges that should be created for each part of the parsed syntax tree of a
//! source file.
//!
//! ## Graph DSL vocabulary
//!
//! **Please note**: This documentation assumes you are already familiar with stack graphs, and how
//! to use different stack graph node types, and the connectivity between nodes, to implement the
//! name binding semantics of your language. We assume that you know what kind of stack graph you
//! want to produce; this documentation focuses only on the mechanics of _how_ to create that stack
//! graph content.
//!
//! As mentioned above, your stack graph construction rules should create stack graph nodes and
//! edges from the parsed content of a source file. You will use TSG [stanzas][] to match on
//! different parts of the parsed syntax tree, and create stack graph content for each match.
//!
//! ### Creating stack graph nodes
//!
//! To create a stack graph node for each identifier in a Python file, you could use the following
//! TSG stanza:
//!
//! ``` skip
//! (identifier) {
//! node new_node
//! }
//! ```
//!
//! (Here, `node` is a TSG statement that creates a new node, and `new_node` is the name of a local
//! variable that the new node is assigned to, letting you refer to the new node in the rest of the
//! stanza.)
//!
//! [stanzas]: https://docs.rs/tree-sitter-graph/*/tree_sitter_graph/reference/index.html#high-level-structure
//!
//! By default, this new node will be a _scope node_. If you need to create a different kind of stack
//! graph node, set the `type` attribute on the new node:
//!
//! ``` skip
//! (identifier) {
//! node new_node
//! attr (new_node) type = "push_symbol"
//! }
//! ```
//!
//! The valid `type` values are:
//!
//! - `drop_scopes`: a _drop scopes_ node
//! - `pop_symbol`: a _pop symbol_ node
//! - `pop_scoped_symbol`: a _pop scoped symbol_ node
//! - `push_symbol`: a _push symbol_ node
//! - `push_scoped_symbol`: a _push scoped symbol_ node
//! - `scope`: a _scope_ node
//!
//! A node without an explicit `type` attribute is assumed to be of type `scope`.
//!
//! Certain node types — `pop_symbol`, `pop_scoped_symbol`, `push_symbol` and `push_scoped_symbol` —
//! also require you to provide a `symbol` attribute. Its value must be a string, but will typically
//! come from the content of a parsed syntax node using the [`source-text`][] function and a syntax
//! capture:
//!
//! [`source-text`]: https://docs.rs/tree-sitter-graph/*/tree_sitter_graph/reference/functions/index.html#source-text
//!
//! ``` skip
//! (identifier) @id {
//! node new_node
//! attr (new_node) type = "push_symbol", symbol = (source-text @id)
//! }
//! ```
//!
//! Node types `pop_symbol` and `pop_scoped_symbol` allow an optional `is_definition` attribute, which
//! marks that node as a proper definition. Node types `push_symbol` and `push_scoped_symbol` allow
//! an optional `is_reference` attribute, which marks the node as a proper reference. When `is_definition`
//! or `is_reference` are set, the `source_node` attribute is required.
//!
//! ``` skip
//! (identifier) @id {
//! node new_node
//! attr (new_node) type = "push_symbol", symbol = (source-text @id), is_reference, source_node = @id
//! }
//! ```
//!
//! A _push scoped symbol_ node requires a `scope` attribute. Its value must be a reference to an `exported`
//! node that you've already created. (This is the exported scope node that will be pushed onto the scope
//! stack.) For instance:
//!
//! ``` skip
//! (identifier) @id {
//! node new_exported_scope_node
//! attr (new_exported_scope_node) is_exported
//! node new_push_scoped_symbol_node
//! attr (new_push_scoped_symbol_node)
//! type = "push_scoped_symbol",
//! symbol = (source-text @id),
//! scope = new_exported_scope_node
//! }
//! ```
//!
//! Nodes of type `scope` allow an optional `is_exported` attribute, that is required to use the scope
//! in a `push_scoped_symbol` node.
//!
//!
//! ### Annotating nodes with location information
//!
//! You can annotate any stack graph node that you create with location information, identifying
//! the portion of the source file that the node "belongs to". This is _required_ for definition
//! and reference nodes, since the location information determines which parts of the source file
//! the user can _click on_, and the _destination_ of any code navigation queries the user makes.
//! To do this, add a `source_node` attribute, whose value is a syntax node capture:
//!
//! ``` skip
//! (function_definition name: (identifier) @id) @func {
//! node def
//! attr (def) type = "pop_symbol", symbol = (source-text @id), source_node = @func, is_definition
//! }
//! ```
//!
//! Note how in this example, we use a different syntax node for the _target_ of the definition
//! (the entirety of the function definition) and for the _name_ of the definition (the content of
//! the function's `name`).
//!
//! Adding the `empty_source_span` attribute will use an empty source span located at the start of the
//! span of the `source_node`. This can be useful when a proper reference or definition is desired,
//! and thus `source_node` is required, but the span of the available source node is too large. For
//! example, a module definition which is located at the start of the program, but does span the
//! whole program:
//!
//! ``` skip
//! (program)@prog {
//! ; ...
//! node mod_def
//! attr mod_def type = "pop_symbol", symbol = mod_name, is_definition, source_node = @prog, empty_source_span
//! ; ...
//! }
//! ```
//!
//! ### Annotating nodes with syntax type information
//!
//! You can annotate any stack graph node with information about its syntax type. To do this, add a `syntax_type`
//! attribute, whose value is a string indicating the syntax type.
//!
//! ``` skip
//! (function_definition name: (identifier) @id) @func {
//! node def
//! ; ...
//! attr (def) syntax_type = "function"
//! }
//! ```
//!
//! ### Annotating definitions with definiens information
//!
//! You cannot annotate definitions with a definiens, which is the thing the definition covers. For example, for
//! a function definition, the definiens would be the function body. To do this, add a `definiens_node` attribute,
//! whose value is a syntax node that spans the definiens.
//!
//! ``` skip
//! (function_definition name: (identifier) @id body: (_) @body) @func {
//! node def
//! ; ...
//! attr (def) definiens_node = @body
//! }
//! ```
//!
//! Definiens are optional and setting them to `#null` explicitly is allowed.
//!
//! ### Connecting stack graph nodes with edges
//!
//! To connect two stack graph nodes, use the `edge` statement to add an edge between them:
//!
//! ``` skip
//! (function_definition name: (identifier) @id) @func {
//! node def
//! attr (def) type = "pop_symbol", symbol = (source-text @id), source_node = @func, is_definition
//! node body
//! edge def -> body
//! }
//! ```
//!
//! To implement shadowing (which determines which definitions are selected when multiple are available),
//! you can add a `precedence` attribute to each edge to indicate which paths are prioritized:
//!
//! ``` skip
//! (function_definition name: (identifier) @id) @func {
//! node def
//! attr (def) type = "pop_symbol", symbol = (source-text @id), source_node = @func, is_definition
//! node body
//! edge def -> body
//! attr (def -> body) precedence = 1
//! }
//! ```
//!
//! (If you don't specify a `precedence`, the default is 0.)
//!
//! ### Referring to the singleton nodes
//!
//! The _root node_ and _jump to scope node_ are singleton nodes that always exist for all stack
//! graphs. You can refer to them using the `ROOT_NODE` and `JUMP_TO_SCOPE_NODE` global variables:
//!
//! ``` skip
//! global ROOT_NODE
//!
//! (function_definition name: (identifier) @id) @func {
//! node def
//! attr (def) type = "pop_symbol", symbol = (source-text @id), source_node = @func, is_definition
//! edge ROOT_NODE -> def
//! }
//! ```
//!
//! ### Attaching debug information to nodes
//!
//! It is possible to attach extra information to nodes for debugging purposes. This is done by adding
//! `debug_*` attributes to nodes. Each attribute defines a debug entry, with the key derived from the
//! attribute name, and the value the string representation of the attribute value. For example, mark
//! a scope node with a kind as follows:
//!
//! ``` skip
//! (function_definition name: (identifier) @id) @func {
//! ; ...
//! node param_scope
//! attr (param_scope) debug_kind = "param_scope"
//! ; ...
//! }
//! ```
//!
//! ### Working with paths
//!
//! Built-in path functions are available to compute symbols that depend on path information, such as
//! module names or imports. The path of the file is provided in the global variable `FILE_PATH`.
//!
//! The following path functions are available:
//! - `path-dir`: get the path consisting of all but the last component of the argument path, or `#null` if it ends in root
//! - `path-fileext`: get the file extension, i.e. everything after the final `.` of the file name of the argument path, or `#null` if it has extension
//! - `path-filename`: get the last component of the argument path, or `#null` if it has no final component
//! - `path-filestem`: get the file stem of the argument path, i.e., everything before the extension, or `#null` if it has no file name
//! - `path-join`: join all argument paths together
//! - `path-normalize`: normalize the argument path by eliminating `.` and `..` components where possible
//! - `path-split`: split the argument path into a list of its components
//!
//! The following example computes a module name from a file path:
//!
//! ``` skip
//! global FILE_PATH
//!
//! (program)@prog {
//! ; ...
//! let dir = (path-dir FILE_PATH)
//! let stem = (path-filestem FILE_PATH)
//! let mod_name = (path-join dir stem)
//! node mod_def
//! attr mod_def type = "pop_symbol", symbol = mod_name, is_definition, source_node = @prog
//! ; ...
//! }
//! ```
//!
//! The following example resolves an import relative to the current file:
//!
//! ``` skip
//! global FILE_PATH
//!
//! (import name:(_)@name)@import {
//! ; ...
//! let dir = (path-dir FILE_PATH)
//! let mod_name = (path-normalize (path-join dir (Source-text @name)))
//! node mod_def
//! attr mod_def type = "pop_symbol", symbol = mod_name, is_definition, source_node = @prog
//! ; ...
//! }
//! ```
//!
//! ## Using this crate from Rust
//!
//! If you need very fine-grained control over how to use the resulting stack graphs, you can
//! construct and operate on [`StackGraph`][stack_graphs::graph::StackGraph] instances directly
//! from Rust code. You will need Rust bindings for the tree-sitter grammar for your source
//! language — for instance, [`tree-sitter-python`][]. Grammar Rust bindings provide a global
//! symbol [`language`][] that you will need. For this example we assume the source of the stack
//! graph rules is defined in a constant `STACK_GRAPH_RULES`.
//!
//! [`tree-sitter-python`]: https://docs.rs/tree-sitter-python/*/
//! [`language`]: https://docs.rs/tree-sitter-python/*/tree_sitter_python/fn.language.html
//!
//! Once you have those, and the contents of the source file you want to analyze, you can construct
//! a stack graph as follows:
//!
//! ```
//! # use stack_graphs::graph::StackGraph;
//! # use tree_sitter_graph::Variables;
//! # use tree_sitter_stack_graphs::StackGraphLanguage;
//! # use tree_sitter_stack_graphs::NoCancellation;
//! #
//! # // This documentation test is not meant to test Python's actual stack graph
//! # // construction rules. An empty TSG file is perfectly valid (it just won't produce any stack
//! # // graph content). This minimizes the amount of work that we do when running `cargo test`.
//! # static STACK_GRAPH_RULES: &str = "";
//! #
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! let python_source = r#"
//! import sys
//! print(sys.path)
//! "#;
//! let grammar = tree_sitter_python::language();
//! let tsg_source = STACK_GRAPH_RULES;
//! let mut language = StackGraphLanguage::from_str(grammar, tsg_source)?;
//! let mut stack_graph = StackGraph::new();
//! let file_handle = stack_graph.get_or_create_file("test.py");
//! let globals = Variables::new();
//! language.build_stack_graph_into(&mut stack_graph, file_handle, python_source, &globals, &NoCancellation)?;
//! # Ok(())
//! # }
//! ```
use controlled_option::ControlledOption;
use lsp_positions::SpanCalculator;
use once_cell::sync::Lazy;
use stack_graphs::arena::Handle;
use stack_graphs::graph::File;
use stack_graphs::graph::Node;
use stack_graphs::graph::NodeID;
use stack_graphs::graph::StackGraph;
use std::borrow::Cow;
use std::collections::HashMap;
use std::collections::HashSet;
use std::mem::transmute;
use std::ops::BitOr;
use std::path::Path;
use std::path::PathBuf;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::time::Duration;
use std::time::Instant;
use thiserror::Error;
use tree_sitter::Parser;
use tree_sitter_graph::functions::Functions;
use tree_sitter_graph::graph::Edge;
use tree_sitter_graph::graph::Graph;
use tree_sitter_graph::graph::GraphNode;
use tree_sitter_graph::graph::GraphNodeRef;
use tree_sitter_graph::graph::Value;
use tree_sitter_graph::parse_error::ParseError;
use tree_sitter_graph::parse_error::TreeWithParseErrorVec;
use tree_sitter_graph::ExecutionConfig;
use util::DisplayParseErrorsPretty;
use util::TreeSitterCancellationFlag;
#[cfg(feature = "cli")]
pub mod ci;
#[cfg(feature = "cli")]
pub mod cli;
pub mod functions;
pub mod loader;
pub mod test;
mod util;
pub use tree_sitter_graph::VariableError;
pub use tree_sitter_graph::Variables;
pub(self) const MAX_PARSE_ERRORS: usize = 5;
// Node type values
static DROP_SCOPES_TYPE: &'static str = "drop_scopes";
static POP_SCOPED_SYMBOL_TYPE: &'static str = "pop_scoped_symbol";
static POP_SYMBOL_TYPE: &'static str = "pop_symbol";
static PUSH_SCOPED_SYMBOL_TYPE: &'static str = "push_scoped_symbol";
static PUSH_SYMBOL_TYPE: &'static str = "push_symbol";
static SCOPE_TYPE: &'static str = "scope";
// Node attribute names
static DEBUG_ATTR_PREFIX: &'static str = "debug_";
static DEFINIENS_NODE_ATTR: &'static str = "definiens_node";
static EMPTY_SOURCE_SPAN_ATTR: &'static str = "empty_source_span";
static IS_DEFINITION_ATTR: &'static str = "is_definition";
static IS_ENDPOINT_ATTR: &'static str = "is_endpoint";
static IS_EXPORTED_ATTR: &'static str = "is_exported";
static IS_REFERENCE_ATTR: &'static str = "is_reference";
static SCOPE_ATTR: &'static str = "scope";
static SOURCE_NODE_ATTR: &'static str = "source_node";
static SYMBOL_ATTR: &'static str = "symbol";
static SYNTAX_TYPE_ATTR: &'static str = "syntax_type";
static TYPE_ATTR: &'static str = "type";
// Expected attributes per node type
static POP_SCOPED_SYMBOL_ATTRS: Lazy<HashSet<&'static str>> = Lazy::new(|| {
HashSet::from([
TYPE_ATTR,
SYMBOL_ATTR,
IS_DEFINITION_ATTR,
DEFINIENS_NODE_ATTR,
SYNTAX_TYPE_ATTR,
])
});
static POP_SYMBOL_ATTRS: Lazy<HashSet<&'static str>> = Lazy::new(|| {
HashSet::from([
TYPE_ATTR,
SYMBOL_ATTR,
IS_DEFINITION_ATTR,
DEFINIENS_NODE_ATTR,
SYNTAX_TYPE_ATTR,
])
});
static PUSH_SCOPED_SYMBOL_ATTRS: Lazy<HashSet<&'static str>> =
Lazy::new(|| HashSet::from([TYPE_ATTR, SYMBOL_ATTR, SCOPE_ATTR, IS_REFERENCE_ATTR]));
static PUSH_SYMBOL_ATTRS: Lazy<HashSet<&'static str>> =
Lazy::new(|| HashSet::from([TYPE_ATTR, SYMBOL_ATTR, IS_REFERENCE_ATTR]));
static SCOPE_ATTRS: Lazy<HashSet<&'static str>> =
Lazy::new(|| HashSet::from([TYPE_ATTR, IS_EXPORTED_ATTR, IS_ENDPOINT_ATTR]));
// Edge attribute names
static PRECEDENCE_ATTR: &'static str = "precedence";
// Global variables
/// Name of the variable used to pass the root node.
pub const ROOT_NODE_VAR: &'static str = "ROOT_NODE";
/// Name of the variable used to pass the jump-to-scope node.
pub const JUMP_TO_SCOPE_NODE_VAR: &'static str = "JUMP_TO_SCOPE_NODE";
/// Name of the variable used to pass the file path.
/// If a root path is given, it should be a descendant of the root path.
pub const FILE_PATH_VAR: &'static str = "FILE_PATH";
/// Name of the variable used to pass the root path.
/// If given, should be an ancestor of the file path.
pub const ROOT_PATH_VAR: &'static str = "ROOT_PATH";
/// Holds information about how to construct stack graphs for a particular language.
pub struct StackGraphLanguage {
language: tree_sitter::Language,
tsg: tree_sitter_graph::ast::File,
tsg_path: PathBuf,
tsg_source: std::borrow::Cow<'static, str>,
functions: Functions,
}
impl StackGraphLanguage {
/// Creates a new stack graph language for the given language and
/// TSG stack graph construction rules.
pub fn new(
language: tree_sitter::Language,
tsg: tree_sitter_graph::ast::File,
) -> StackGraphLanguage {
debug_assert_eq!(language, tsg.language);
StackGraphLanguage {
language,
tsg,
tsg_path: PathBuf::from("<tsg>"),
tsg_source: Cow::from(String::new()),
functions: Self::default_functions(),
}
}
/// Creates a new stack graph language for the given language, loading the
/// TSG stack graph construction rules from a string. Keeps the source, which
/// can later be used for [`BuildError::display_pretty`][].
pub fn from_str(
language: tree_sitter::Language,
tsg_source: &str,
) -> Result<StackGraphLanguage, LanguageError> {
let tsg = tree_sitter_graph::ast::File::from_str(language, tsg_source)?;
Ok(StackGraphLanguage {
language,
tsg,
tsg_path: PathBuf::from("<missing tsg path>"),
tsg_source: Cow::from(tsg_source.to_string()),
functions: Self::default_functions(),
})
}
/// Creates a new stack graph language for the given language, loading the TSG
/// stack graph construction rules from the given source. The path is purely for
/// informational purposes, and is not accessed. The source and path are kept,
/// e.g. to use for [`BuildError::display_pretty`][].
pub fn from_source(
language: tree_sitter::Language,
tsg_path: PathBuf,
tsg_source: &str,
) -> Result<StackGraphLanguage, LanguageError> {
let mut sgl = Self::from_str(language, tsg_source)?;
sgl.tsg_path = tsg_path;
Ok(sgl)
}
pub fn set_tsg_info(&mut self, path: PathBuf, source: Cow<'static, str>) {
self.tsg_path = path;
self.tsg_source = source;
}
fn default_functions() -> tree_sitter_graph::functions::Functions {
let mut functions = tree_sitter_graph::functions::Functions::stdlib();
crate::functions::add_path_functions(&mut functions);
functions
}
pub fn functions_mut(&mut self) -> &mut tree_sitter_graph::functions::Functions {
&mut self.functions
}
pub fn language(&self) -> tree_sitter::Language {
self.language
}
/// Returns the original TSG path, if it was provided at construction or set with
/// [`set_tsg_info`][]. Can be used as input for [`BuildError::display_pretty`][].
pub fn tsg_path(&self) -> &Path {
&self.tsg_path
}
/// Returns the original TSG source, if it was provided at construction or set with
/// [`set_tsg_info`][]. Can be used as input for [`BuildError::display_pretty`][].
pub fn tsg_source(&self) -> &Cow<'static, str> {
&self.tsg_source
}
}
/// An error that can occur while loading in the TSG stack graph construction rules for a language
#[derive(Debug, Error)]
pub enum LanguageError {
#[error(transparent)]
ParseError(#[from] tree_sitter_graph::ParseError),
}
impl LanguageError {
pub fn display_pretty<'a>(
&'a self,
path: &'a Path,
source: &'a str,
) -> impl std::fmt::Display + 'a {
match self {
Self::ParseError(err) => err.display_pretty(path, source),
}
}
}
impl StackGraphLanguage {
/// Executes the graph construction rules for this language against a source file, creating new
/// nodes and edges in `stack_graph`. Any new nodes that we create will belong to `file`.
/// (The source file must be implemented in this language, otherwise you'll probably get a
/// parse error.)
pub fn build_stack_graph_into<'a>(
&'a self,
stack_graph: &'a mut StackGraph,
file: Handle<File>,
source: &'a str,
globals: &'a Variables<'a>,
cancellation_flag: &'a dyn CancellationFlag,
) -> Result<(), BuildError> {
self.builder_into_stack_graph(stack_graph, file, source)
.build(globals, cancellation_flag)
}
/// Create a builder that will execute the graph construction rules for this language against
/// a source file, creating new nodes and edges in `stack_graph`. Any new nodes created during
/// execution will belong to `file`. (The source file must be implemented in this language,
/// otherwise you'll probably get a parse error.)
pub fn builder_into_stack_graph<'a>(
&'a self,
stack_graph: &'a mut StackGraph,
file: Handle<File>,
source: &'a str,
) -> Builder<'a> {
Builder::new(self, stack_graph, file, source)
}
}
pub struct Builder<'a> {
sgl: &'a StackGraphLanguage,
stack_graph: &'a mut StackGraph,
file: Handle<File>,
source: &'a str,
graph: Graph<'a>,
remapped_nodes: HashMap<usize, NodeID>,
injected_node_count: usize,
span_calculator: SpanCalculator<'a>,
}
impl<'a> Builder<'a> {
fn new(
sgl: &'a StackGraphLanguage,
stack_graph: &'a mut StackGraph,
file: Handle<File>,
source: &'a str,
) -> Self {
let span_calculator = SpanCalculator::new(source);
Builder {
sgl,
stack_graph,
file,
source,
graph: Graph::new(),
remapped_nodes: HashMap::new(),
injected_node_count: 0,
span_calculator,
}
}
/// Executes this builder.
pub fn build(
mut self,
globals: &'a Variables<'a>,
cancellation_flag: &dyn CancellationFlag,
) -> Result<(), BuildError> {
let tree = {
let mut parser = Parser::new();
parser.set_language(self.sgl.language)?;
let ts_cancellation_flag = TreeSitterCancellationFlag::from(cancellation_flag);
// The parser.set_cancellation_flag` is unsafe, because it does not tie the
// lifetime of the parser to the lifetime of the cancellation flag in any way.
// To make it more obvious that the parser does not outlive the cancellation flag,
// it is put into its own block here, instead of extending to the end of the method.
unsafe { parser.set_cancellation_flag(Some(ts_cancellation_flag.as_ref())) };
parser
.parse(self.source, None)
.ok_or(BuildError::ParseError)?
};
let parse_errors = ParseError::into_all(tree);
if parse_errors.errors().len() > 0 {
return Err(BuildError::ParseErrors(parse_errors));
}
let tree = parse_errors.into_tree();
let mut globals = Variables::nested(globals);
let root_node = self.inject_node(NodeID::root());
globals
.add(ROOT_NODE_VAR.into(), root_node.into())
.unwrap_or_default();
let jump_to_scope_node = self.inject_node(NodeID::jump_to());
globals
.add(JUMP_TO_SCOPE_NODE_VAR.into(), jump_to_scope_node.into())
.expect("Failed to set JUMP_TO_SCOPE_NODE");
let mut config = ExecutionConfig::new(&self.sgl.functions, &globals)
.lazy(true)
.debug_attributes(
[DEBUG_ATTR_PREFIX, "tsg_location"].concat().as_str().into(),
[DEBUG_ATTR_PREFIX, "tsg_variable"].concat().as_str().into(),
[DEBUG_ATTR_PREFIX, "tsg_match_node"]
.concat()
.as_str()
.into(),
);
// The execute_into() method requires that the reference to the tree matches the lifetime
// parameter 'a of the Graph, because the Graph can hold references to the Tree. In this Builder,
// the Graph is created _before_ the Tree, so that it can be prepopulated with nodes. Because of
// that, the borrow checker complains that the Tree only lives as long as this method, not as long
// as the lifetime parameter 'a. Here we transmute the Tree reference to give it the required 'a
// lifetime, which is safe because:
// (1) this method takes ownership of the Builder; and
// (2) it returns no values connected to 'a.
// These together guarantee that no values connected to the lifetime 'a outlive the Tree.
let tree: &'a tree_sitter::Tree = unsafe { transmute(&tree) };
self.sgl.tsg.execute_into(
&mut self.graph,
tree,
self.source,
&mut config,
&(cancellation_flag as &dyn CancellationFlag),
)?;
self.load(cancellation_flag)
}
/// Create a graph node to represent the stack graph node. It is the callers responsibility to
/// ensure the stack graph node exists.
pub fn inject_node(&mut self, id: NodeID) -> GraphNodeRef {
let node = self.graph.add_graph_node();
self.remapped_nodes.insert(node.index(), id);
self.injected_node_count += 1;
node
}
}
/// Trait to signal that the execution is cancelled
pub trait CancellationFlag: Sync {
fn check(&self, at: &'static str) -> Result<(), CancellationError>;
}
#[derive(Clone, Debug, Error)]
#[error("Cancelled at \"{0}\"")]
pub struct CancellationError(pub &'static str);
impl stack_graphs::CancellationFlag for &dyn CancellationFlag {
fn check(&self, at: &'static str) -> Result<(), stack_graphs::CancellationError> {
CancellationFlag::check(*self, at).map_err(|err| stack_graphs::CancellationError(err.0))
}
}
impl tree_sitter_graph::CancellationFlag for &dyn CancellationFlag {
fn check(&self, at: &'static str) -> Result<(), tree_sitter_graph::CancellationError> {
CancellationFlag::check(*self, at)
.map_err(|err| tree_sitter_graph::CancellationError(err.0))
}
}
impl<'a> BitOr for &'a dyn CancellationFlag {
type Output = OrCancellationFlag<'a>;
fn bitor(self, rhs: Self) -> Self::Output {
OrCancellationFlag(self, rhs)
}
}
pub struct OrCancellationFlag<'a>(&'a dyn CancellationFlag, &'a dyn CancellationFlag);
impl CancellationFlag for OrCancellationFlag<'_> {
fn check(&self, at: &'static str) -> Result<(), CancellationError> {
self.0.check(at)?;
self.1.check(at)?;
Ok(())
}
}
pub struct NoCancellation;
impl CancellationFlag for NoCancellation {
fn check(&self, _at: &'static str) -> Result<(), CancellationError> {
Ok(())
}
}
pub struct CancelAfterDuration {
start: Instant,
limit: Duration,
}
impl CancelAfterDuration {
pub fn new(limit: Duration) -> Self {
Self {
start: Instant::now(),
limit,
}
}
pub fn from_option(limit: Option<Duration>) -> Box<dyn CancellationFlag> {
match limit {
Some(limit) => Box::new(Self::new(limit)),
None => Box::new(NoCancellation),
}
}
}
impl CancellationFlag for CancelAfterDuration {
fn check(&self, at: &'static str) -> Result<(), CancellationError> {
if self.start.elapsed().ge(&self.limit) {
return Err(CancellationError(at));
}
Ok(())
}
}
#[derive(Clone)]
pub struct AtomicCancellationFlag {
flag: Arc<AtomicBool>,
}
impl AtomicCancellationFlag {
pub fn new() -> Self {
Self {
flag: Arc::new(AtomicBool::new(false)),
}
}
pub fn cancel(&self) {
self.flag.store(true, Ordering::Relaxed)
}
}
impl CancellationFlag for AtomicCancellationFlag {
fn check(&self, at: &'static str) -> Result<(), CancellationError> {
if self.flag.load(Ordering::Relaxed) {
return Err(CancellationError(at));
}
Ok(())
}
}
/// An error that can occur while loading a stack graph from a TSG file
#[derive(Debug, Error)]
pub enum BuildError {
#[error("{0}")]
Cancelled(&'static str),
#[error("Missing ‘type’ attribute on graph node")]
MissingNodeType(GraphNodeRef),
#[error("Missing ‘symbol’ attribute on graph node")]
MissingSymbol(GraphNodeRef),
#[error("Missing ‘scope’ attribute on graph node")]
MissingScope(GraphNodeRef),
#[error("Unknown ‘{0}’ flag type {1}")]
UnknownFlagType(String, String),
#[error("Unknown node type {0}")]
UnknownNodeType(String),
#[error("Unknown symbol type {0}")]
UnknownSymbolType(String),
#[error(transparent)]
ExecutionError(tree_sitter_graph::ExecutionError),
#[error("Error parsing source")]
ParseError,
#[error("Error parsing source")]
ParseErrors(TreeWithParseErrorVec),
#[error("Error converting shorthand ‘{0}’ on {1} with value {2}")]
ConversionError(String, String, String),
#[error(transparent)]
LanguageError(#[from] tree_sitter::LanguageError),
#[error("Expected exported symbol scope in {0}, got {1}")]
SymbolScopeError(String, String),
}
impl From<stack_graphs::CancellationError> for BuildError {
fn from(value: stack_graphs::CancellationError) -> Self {
Self::Cancelled(value.0)
}
}
impl From<tree_sitter_graph::ExecutionError> for BuildError {
fn from(value: tree_sitter_graph::ExecutionError) -> Self {
match value {
tree_sitter_graph::ExecutionError::Cancelled(err) => Self::Cancelled(err.0),
err => Self::ExecutionError(err),
}
}
}
impl BuildError {
pub fn display_pretty<'a>(
&'a self,
source_path: &'a Path,
source: &'a str,
tsg_path: &'a Path,
tsg: &'a str,
) -> impl std::fmt::Display + 'a {
DisplayBuildErrorPretty {
error: self,
source_path,
source,
tsg_path,
tsg,
}
}
}
struct DisplayBuildErrorPretty<'a> {
error: &'a BuildError,
source_path: &'a Path,
source: &'a str,
tsg_path: &'a Path,
tsg: &'a str,
}
impl std::fmt::Display for DisplayBuildErrorPretty<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self.error {
BuildError::ExecutionError(err) => write!(
f,
"{}",
err.display_pretty(self.source_path, self.source, self.tsg_path, self.tsg)
),
BuildError::ParseErrors(parse_errors) => write!(
f,
"{}",
DisplayParseErrorsPretty {
parse_errors,
path: self.source_path,
source: self.source,
max_errors: crate::MAX_PARSE_ERRORS,
}
),
err => err.fmt(f),
}
}
}
impl<'a> Builder<'a> {
fn load(mut self, cancellation_flag: &dyn CancellationFlag) -> Result<(), BuildError> {
let cancellation_flag: &dyn stack_graphs::CancellationFlag = &cancellation_flag;
// By default graph ids are used for stack graph local_ids. A remapping is computed
// for local_ids that already exist in the graph---all other graph ids are mapped to
// the same local_id. See [`self.node_id_for_index`] for more details.
let mut next_local_id = (self.graph.node_count() - self.injected_node_count) as u32;
for node in self.stack_graph.nodes_for_file(self.file) {
let local_id = self.stack_graph[node].id().local_id();
let index = (local_id as usize) + self.injected_node_count;
// find next available local_id for which no stack graph node exists yet
while self
.stack_graph
.node_for_id(NodeID::new_in_file(self.file, next_local_id))
.is_some()
{
next_local_id += 1;
}
// remap graph node index to the available stack graph node local_id
self.remapped_nodes
.insert(index, NodeID::new_in_file(self.file, next_local_id))
.map(|_| panic!("index already remapped"));
}
// First create a stack graph node for each TSG node. (The skip(...) is because the first
// DSL nodes that we create are the proxies for the injected stack graph nodes.)
for node_ref in self.graph.iter_nodes().skip(self.injected_node_count) {
cancellation_flag.check("loading graph nodes")?;
let node_type = self.get_node_type(node_ref)?;
let handle = match node_type {
NodeType::DropScopes => self.load_drop_scopes(node_ref),
NodeType::PopScopedSymbol => self.load_pop_scoped_symbol(node_ref)?,
NodeType::PopSymbol => self.load_pop_symbol(node_ref)?,
NodeType::PushScopedSymbol => self.load_push_scoped_symbol(node_ref)?,
NodeType::PushSymbol => self.load_push_symbol(node_ref)?,
NodeType::Scope => self.load_scope(node_ref)?,
};
self.load_source_info(node_ref, handle)?;
self.load_node_debug_info(node_ref, handle)?;
}
for node in self.stack_graph.nodes_for_file(self.file) {
self.verify_node(node)?;
}
// Then add stack graph edges for each TSG edge. Note that we _don't_ skip(...) here because
// there might be outgoing nodes from the “root” node that we need to process.
// (Technically the caller could add outgoing nodes from “jump to scope” as well, but those
// are invalid according to the stack graph semantics and will never be followed.
for source_ref in self.graph.iter_nodes() {
let source = &self.graph[source_ref];
let source_node_id = self.node_id_for_graph_node(source_ref);
let source_handle = self.stack_graph.node_for_id(source_node_id).unwrap();
for (sink_ref, edge) in source.iter_edges() {
cancellation_flag.check("loading graph edges")?;
let precedence = match edge.attributes.get(PRECEDENCE_ATTR) {
Some(precedence) => precedence.as_integer()? as i32,
None => 0,
};
let sink_node_id = self.node_id_for_graph_node(sink_ref);
let sink_handle = self.stack_graph.node_for_id(sink_node_id).unwrap();
self.stack_graph
.add_edge(source_handle, sink_handle, precedence);
Self::load_edge_debug_info(
&mut self.stack_graph,
source_handle,
sink_handle,
edge,
)?;
}
}
Ok(())
}
fn get_node_type(&self, node_ref: GraphNodeRef) -> Result<NodeType, BuildError> {
let node = &self.graph[node_ref];
let node_type = match node.attributes.get(TYPE_ATTR) {
Some(node_type) => node_type.as_str()?,
None => return Ok(NodeType::Scope),
};
if node_type == DROP_SCOPES_TYPE {
return Ok(NodeType::DropScopes);
} else if node_type == POP_SCOPED_SYMBOL_TYPE {
return Ok(NodeType::PopScopedSymbol);
} else if node_type == POP_SYMBOL_TYPE {
return Ok(NodeType::PopSymbol);
} else if node_type == PUSH_SCOPED_SYMBOL_TYPE {
return Ok(NodeType::PushScopedSymbol);
} else if node_type == PUSH_SYMBOL_TYPE {
return Ok(NodeType::PushSymbol);
} else if node_type == SCOPE_TYPE {
return Ok(NodeType::Scope);
} else {
return Err(BuildError::UnknownNodeType(format!("{}", node_type)));
}
}
fn verify_node(&self, node: Handle<Node>) -> Result<(), BuildError> {
if let Node::PushScopedSymbol(node) = &self.stack_graph[node] {
let scope = &self.stack_graph[self.stack_graph.node_for_id(node.scope).unwrap()];
if !scope.is_exported_scope() {
return Err(BuildError::SymbolScopeError(
format!("{}", node.display(self.stack_graph)),
format!("{}", scope.display(self.stack_graph)),
));
}
}
Ok(())
}
}
enum NodeType {
DropScopes,
PopSymbol,
PopScopedSymbol,
PushSymbol,
PushScopedSymbol,
Scope,
}
impl<'a> Builder<'a> {
/// Get the NodeID corresponding to a Graph node.
///
/// By default, graph nodes get their index shifted by [`self.injected_node_count`] as their
/// local_id, unless they have a corresponding entry in the [`self.remapped_nodes`] map. This
/// is the case if:
/// 1. The node was injected, in which case it is mapped to the NodeID of the injected node.
/// 2. The node's default local_id clashes with a preexisting node, in which case it is mapped to
/// an available local_id beyond the range of default local_ids.
fn node_id_for_graph_node(&self, node_ref: GraphNodeRef) -> NodeID {
let index = node_ref.index();
self.remapped_nodes.get(&index).map_or_else(
|| NodeID::new_in_file(self.file, (index - self.injected_node_count) as u32),
|id| *id,
)
}
fn load_drop_scopes(&mut self, node_ref: GraphNodeRef) -> Handle<Node> {
let id = self.node_id_for_graph_node(node_ref);
self.stack_graph.add_drop_scopes_node(id).unwrap()
}
fn load_pop_scoped_symbol(
&mut self,
node_ref: GraphNodeRef,
) -> Result<Handle<Node>, BuildError> {
let node = &self.graph[node_ref];
let symbol = match node.attributes.get(SYMBOL_ATTR) {
Some(symbol) => self.load_symbol(symbol)?,
None => return Err(BuildError::MissingSymbol(node_ref)),
};
let symbol = self.stack_graph.add_symbol(&symbol);
let id = self.node_id_for_graph_node(node_ref);
let is_definition = self.load_flag(node, IS_DEFINITION_ATTR)?;
self.verify_attributes(node, POP_SCOPED_SYMBOL_TYPE, &POP_SCOPED_SYMBOL_ATTRS);
let node_handle = self
.stack_graph
.add_pop_scoped_symbol_node(id, symbol, is_definition)
.unwrap();
if is_definition {
self.load_definiens_info(node_ref, node_handle)?;
}
Ok(node_handle)
}
fn load_pop_symbol(&mut self, node_ref: GraphNodeRef) -> Result<Handle<Node>, BuildError> {
let node = &self.graph[node_ref];
let symbol = match node.attributes.get(SYMBOL_ATTR) {
Some(symbol) => self.load_symbol(symbol)?,
None => return Err(BuildError::MissingSymbol(node_ref)),
};
let symbol = self.stack_graph.add_symbol(&symbol);
let id = self.node_id_for_graph_node(node_ref);
let is_definition = self.load_flag(node, IS_DEFINITION_ATTR)?;
self.verify_attributes(node, POP_SYMBOL_TYPE, &POP_SYMBOL_ATTRS);
let node_handle = self
.stack_graph
.add_pop_symbol_node(id, symbol, is_definition)
.unwrap();
if is_definition {
self.load_definiens_info(node_ref, node_handle)?;
}
Ok(node_handle)
}
fn load_push_scoped_symbol(
&mut self,
node_ref: GraphNodeRef,
) -> Result<Handle<Node>, BuildError> {
let node = &self.graph[node_ref];
let symbol = match node.attributes.get(SYMBOL_ATTR) {
Some(symbol) => self.load_symbol(symbol)?,
None => return Err(BuildError::MissingSymbol(node_ref)),
};
let symbol = self.stack_graph.add_symbol(&symbol);
let id = self.node_id_for_graph_node(node_ref);
let scope = match node.attributes.get(SCOPE_ATTR) {
Some(scope) => self.node_id_for_graph_node(scope.as_graph_node_ref()?),
None => return Err(BuildError::MissingScope(node_ref)),
};
let is_reference = self.load_flag(node, IS_REFERENCE_ATTR)?;
self.verify_attributes(node, PUSH_SCOPED_SYMBOL_TYPE, &PUSH_SCOPED_SYMBOL_ATTRS);
Ok(self
.stack_graph
.add_push_scoped_symbol_node(id, symbol, scope, is_reference)
.unwrap())
}
fn load_push_symbol(&mut self, node_ref: GraphNodeRef) -> Result<Handle<Node>, BuildError> {
let node = &self.graph[node_ref];
let symbol = match node.attributes.get(SYMBOL_ATTR) {
Some(symbol) => self.load_symbol(symbol)?,
None => return Err(BuildError::MissingSymbol(node_ref)),
};
let symbol = self.stack_graph.add_symbol(&symbol);
let id = self.node_id_for_graph_node(node_ref);
let is_reference = self.load_flag(node, IS_REFERENCE_ATTR)?;
self.verify_attributes(node, PUSH_SYMBOL_TYPE, &PUSH_SYMBOL_ATTRS);
Ok(self
.stack_graph
.add_push_symbol_node(id, symbol, is_reference)
.unwrap())
}
fn load_scope(&mut self, node_ref: GraphNodeRef) -> Result<Handle<Node>, BuildError> {
let node = &self.graph[node_ref];
let id = self.node_id_for_graph_node(node_ref);
let is_exported =
self.load_flag(node, IS_EXPORTED_ATTR)? || self.load_flag(node, IS_ENDPOINT_ATTR)?;
self.verify_attributes(node, SCOPE_TYPE, &SCOPE_ATTRS);
Ok(self.stack_graph.add_scope_node(id, is_exported).unwrap())
}
fn load_symbol(&self, value: &Value) -> Result<String, BuildError> {
match value {
Value::Integer(i) => Ok(i.to_string()),
Value::String(s) => Ok(s.clone()),
_ => Err(BuildError::UnknownSymbolType(format!("{}", value))),
}
}
fn load_flag(&self, node: &GraphNode, attribute: &str) -> Result<bool, BuildError> {
match node.attributes.get(attribute) {
Some(value) => value.as_boolean().map_err(|_| {
BuildError::UnknownFlagType(format!("{}", attribute), format!("{}", value))
}),
None => Ok(false),
}
}
fn load_source_info(
&mut self,
node_ref: GraphNodeRef,
node_handle: Handle<Node>,
) -> Result<(), BuildError> {
let node = &self.graph[node_ref];
if let Some(source_node) = node.attributes.get(SOURCE_NODE_ATTR) {
let source_node = &self.graph[source_node.as_syntax_node_ref()?];
let mut source_span = self.span_calculator.for_node(source_node);
if match node.attributes.get(EMPTY_SOURCE_SPAN_ATTR) {
Some(empty_source_span) => empty_source_span.as_boolean()?,
None => false,
} {
source_span.end = source_span.start.clone();
}
let containing_line = &self.source[source_span.start.containing_line.clone()];
let containing_line = self.stack_graph.add_string(containing_line);
let source_info = self.stack_graph.source_info_mut(node_handle);
source_info.span = source_span;
source_info.containing_line = ControlledOption::some(containing_line);
}
if let Some(syntax_type) = node.attributes.get(SYNTAX_TYPE_ATTR) {
let syntax_type = syntax_type.as_str()?;
let syntax_type = self.stack_graph.add_string(syntax_type);
let source_info = self.stack_graph.source_info_mut(node_handle);
source_info.syntax_type = syntax_type.into();
}
Ok(())
}
fn load_definiens_info(
&mut self,
node_ref: GraphNodeRef,
node_handle: Handle<Node>,
) -> Result<(), BuildError> {
let node = &self.graph[node_ref];
let definiens_node = match node.attributes.get(DEFINIENS_NODE_ATTR) {
Some(Value::Null) => return Ok(()),
Some(definiens_node) => &self.graph[definiens_node.as_syntax_node_ref()?],
None => return Ok(()),
};
let definiens_span = self.span_calculator.for_node(definiens_node);
let source_info = self.stack_graph.source_info_mut(node_handle);
source_info.definiens_span = definiens_span;
Ok(())
}
fn load_node_debug_info(
&mut self,
node_ref: GraphNodeRef,
node_handle: Handle<Node>,
) -> Result<(), BuildError> {
let node = &self.graph[node_ref];
for (name, value) in node.attributes.iter() {
let name = name.to_string();
if name.starts_with(DEBUG_ATTR_PREFIX) {
let value = match value {
Value::String(value) => value.clone(),
value => value.to_string(),
};
let key = self
.stack_graph
.add_string(&name[DEBUG_ATTR_PREFIX.len()..]);
let value = self.stack_graph.add_string(&value);
self.stack_graph
.node_debug_info_mut(node_handle)
.add(key, value);
}
}
Ok(())
}
fn load_edge_debug_info(
stack_graph: &mut StackGraph,
source_handle: Handle<Node>,
sink_handle: Handle<Node>,
edge: &Edge,
) -> Result<(), BuildError> {
for (name, value) in edge.attributes.iter() {
let name = name.to_string();
if name.starts_with(DEBUG_ATTR_PREFIX) {
let value = match value {
Value::String(value) => value.clone(),
value => value.to_string(),
};
let key = stack_graph.add_string(&name[DEBUG_ATTR_PREFIX.len()..]);
let value = stack_graph.add_string(&value);
stack_graph
.edge_debug_info_mut(source_handle, sink_handle)
.add(key, value);
}
}
Ok(())
}
fn verify_attributes(
&self,
node: &GraphNode,
node_type: &str,
allowed_attributes: &HashSet<&'static str>,
) {
for (id, _) in node.attributes.iter() {
let id = id.as_str();
if !allowed_attributes.contains(id)
&& id != SOURCE_NODE_ATTR
&& id != EMPTY_SOURCE_SPAN_ATTR
&& !id.starts_with(DEBUG_ATTR_PREFIX)
{
eprintln!("Unexpected attribute {} on node of type {}", id, node_type);
}
}
}
}
pub trait FileAnalyzer {
/// Construct stack graph for the given file. Implementations must assume that nodes
/// for the given file may already exist, and make sure to prevent node id conflicts,
/// for example by using `StackGraph::new_node_id`.
fn build_stack_graph_into<'a>(
&self,
stack_graph: &mut StackGraph,
file: Handle<File>,
path: &Path,
source: &str,
all_paths: &mut dyn Iterator<Item = &'a Path>,
globals: &HashMap<String, String>,
cancellation_flag: &dyn CancellationFlag,
) -> Result<(), BuildError>;
}