1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
use std::fmt::Display;

use crate::prelude::Node;

/// The strategy to use when removing a node from the tree.
///
/// This enum represents the strategy to use when removing a node from the tree. The `RetainChildren`
/// strategy retains the children of the node when the node is removed. The `RemoveNodeAndChildren`
/// strategy removes the node and its children when the node is removed.
#[derive(Clone, Debug)]
pub enum NodeRemovalStrategy {
	/// Retain the children of the node. This means that the children of the node are attached to the
	/// parent of the node when the node is removed. So the children of the node become children of the
	/// parent of the node.
	RetainChildren,
	/// Remove the node and all subsequent children. This means that the node and its children are
	/// removed from the tree when the node is removed. All the subsequent grand children of the node are
	/// removed from the tree.
	RemoveNodeAndChildren,
}

pub type SubTree<Q, T> = Tree<Q, T>;

/// A tree data structure.
///
/// This struct represents a tree data structure. A tree is a data structure that consists of nodes
/// connected by edges. Each node has a parent node and zero or more child nodes. The tree has a root
/// node that is the topmost node in the tree. The tree can be used to represent hierarchical data
/// structures such as file systems, organization charts, and family trees.
///
/// # Example
///
/// ```rust
/// # use tree_ds::prelude::Tree;
///
/// let tree: Tree<i32, i32> = Tree::new();
/// ```
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Tree<Q, T> where Q: PartialEq + Eq + Clone, T: PartialEq + Eq + Clone {
	nodes: Vec<Node<Q, T>>,
}

impl<Q, T> Tree<Q, T> where Q: PartialEq + Eq + Clone + Display, T: PartialEq + Eq + Clone {
	/// Create a new tree.
	///
	/// This method creates a new tree with no nodes.
	///
	/// # Returns
	///
	/// A new tree with no nodes.
	///
	/// # Example
	///
	/// ```rust
	/// # use tree_ds::prelude::Tree;
	///
	/// let tree: Tree<i32, i32> = Tree::new();
	/// ```
	pub fn new() -> Self {
		Tree::default()
	}

	/// Add a node to the tree.
	///
	/// This method adds a node to the tree. The node is added as a child of the parent node with the
	/// given parent id. If the parent id is `None`, the node is added as a root node. The node id is
	/// used to identify the node and the value is the value of the node. The value can be used to store
	/// any data that you want to associate with the node.
	///
	/// # Arguments
	///
	/// * `node_id` - The id of the node.
	/// * `value` - The value of the node.
	/// * `parent_id` - The id of the parent node. If `None`, the node is added as a root node.
	///
	/// # Returns
	///
	/// The id of the node that was added to the tree.
	///
	/// # Example
	///
	/// ```rust
	/// # use tree_ds::prelude::{Tree, Node};
	///
	/// let mut tree: Tree<i32, i32> = Tree::new();
	/// let node_id = tree.add_node(Node::new(1, Some(2)), None);
	/// ```
	pub fn add_node(&mut self, node: Node<Q, T>, parent_id: Option<Q>) -> Q {
		if let Some(parent_id) = parent_id {
			if let Some(parent) = self.nodes
									  .iter_mut()
									  .find(|n| n.get_node_id() == parent_id) {
				parent.add_child(node.clone());
			}
		}
		self.nodes.push(node.clone());
		node.get_node_id()
	}

	/// Get a node in the tree.
	///
	/// This method gets the node with the given node id in the tree.
	///
	/// # Arguments
	///
	/// * `node_id` - The id of the node.
	///
	/// # Returns
	///
	/// The node with the given node id in the tree or `None` if the node is not found.
	///
	/// # Example
	///
	/// ```rust
	/// # use tree_ds::prelude::{Node, Tree};
	///
	/// let mut tree: Tree<i32, i32> = Tree::new();
	///
	/// let node = Node::new(1, Some(2));
	/// tree.add_node(node.clone(), None);
	///
	/// assert_eq!(tree.get_node(1), Some(node));
	/// ```
	pub fn get_node(&self, node_id: Q) -> Option<Node<Q, T>> {
		self.nodes
			.iter()
			.find(|n| n.get_node_id() == node_id).cloned()
	}

	/// Get the root node of the tree.
	///
	/// This method gets the root node of the tree. The root node is the topmost node in the tree. The
	/// root node has no parent node.
	///
	/// # Returns
	///
	/// The root node of the tree or `None` if the tree has no root node.
	///
	/// # Example
	///
	/// ```rust
	/// # use tree_ds::prelude::{Node, Tree};
	///
	/// let mut tree: Tree<i32, i32> = Tree::new();
	///
	/// let node = Node::new(1, Some(2));
	/// tree.add_node(node.clone(), None);
	///
	/// assert_eq!(tree.get_root_node(), Some(node));
	/// ```
	pub fn get_root_node(&self) -> Option<Node<Q, T>> {
		self.nodes.iter().find(|n| n.get_parent().is_none()).cloned()
	}

	/// Get the nodes in the tree.
	///
	/// This method gets the nodes in the tree.
	///
	/// # Returns
	///
	/// The nodes in the tree.
	///
	/// # Example
	///
	/// ```rust
	/// # use tree_ds::prelude::{Node, Tree};
	///
	/// let mut tree: Tree<i32, i32> = Tree::new();
	///
	/// let node = Node::new(1, Some(2));
	/// tree.add_node(node.clone(), None);
	///
	/// assert_eq!(tree.get_nodes().len(), 1);
	/// ```
	pub fn get_nodes(&self) -> Vec<Node<Q, T>> {
		self.nodes.clone()
	}

	/// Remove a node from the tree.
	///
	/// This method removes a node from the tree. The node is removed using the given removal strategy.
	/// The removal strategy determines how the node and its children are removed from the tree. The
	/// `RetainChildren` strategy retains the children of the node when the node is removed. The
	/// `RemoveNodeAndChildren` strategy removes the node and its children when the node is removed.
	///
	/// # Arguments
	///
	/// * `node_id` - The id of the node to remove.
	/// * `strategy` - The strategy to use when removing the node.
	///
	/// # Example
	///
	/// ```rust
	/// # use tree_ds::prelude::{Node, Tree, NodeRemovalStrategy};
	///
	/// let mut tree: Tree<i32, i32> = Tree::new();
	///
	/// let node = Node::new(1, Some(2));
	/// tree.add_node(node.clone(), None);
	/// let node_2 = Node::new(2, Some(3));
	/// tree.add_node(node_2.clone(), Some(1));
	/// let node_3 = Node::new(3, Some(6));
	/// tree.add_node(node_3.clone(), Some(2));
	///
	/// tree.remove_node(2, NodeRemovalStrategy::RetainChildren);
	/// assert_eq!(tree.get_nodes().len(), 2);
	pub fn remove_node(&mut self, node_id: Q, strategy: NodeRemovalStrategy) {
		match strategy {
			NodeRemovalStrategy::RetainChildren => {
				let node = self.get_node(node_id.clone()).unwrap();
				let parent_node = node.get_parent().unwrap();
				parent_node.remove_child(node.clone());
				let children = node.get_children();
				for child in children {
					parent_node.add_child(child.clone());
				}
				self.nodes.retain(|n| n.get_node_id() != node_id);
			}
			NodeRemovalStrategy::RemoveNodeAndChildren => {
				let node = self.get_node(node_id.clone()).unwrap();
				let children = node.get_children();
				if let Some(parent) = node.get_parent() {
					parent.remove_child(node.clone());
				}
				self.nodes.retain(|n| n.get_node_id() != node_id);
				for child in children {
					node.remove_child(child.clone());
					self.remove_node(child.get_node_id(), strategy.clone());
				}
			}
		}
	}

	/// Get a subsection of the tree.
	///
	/// This method gets a subsection of the tree starting from the node with the given node id. The
	/// subsection is a list of nodes that are descendants of the node with the given node id upto the
	/// given number of descendants. If the number of descendants is `None`, all the descendants of the
	/// node are included in the subsection.
	///
	/// # Arguments
	///
	/// * `node_id` - The id of the node to get the subsection from.
	/// * `generations` - The number of descendants to include in the subsection. If `None`, all the
	/// descendants of the node are included in the subsection.
	///
	/// # Returns
	///
	/// The subsection of the tree starting from the node with the given node id.
	///
	/// # Example
	///
	/// ```rust
	/// # use tree_ds::prelude::{Node, Tree};
	///
	/// # let mut tree: Tree<i32, i32> = Tree::new();
	///
	/// let node = Node::new(1, Some(2));
	/// tree.add_node(node.clone(), None);
	/// let node_2 = Node::new(2, Some(3));
	/// tree.add_node(node_2.clone(), Some(1));
	/// let node_3 = Node::new(3, Some(6));
	/// tree.add_node(node_3.clone(), Some(2));
	///
	/// let subsection = tree.get_subtree(2, None);
	/// assert_eq!(subsection.get_nodes().len(), 2);
	/// ```
	pub fn get_subtree(&self, node_id: Q, generations: Option<i32>) -> SubTree<Q, T> {
		let mut subsection = Vec::new();
		if let Some(node) = self.get_node(node_id) {
			subsection.push(node.clone());
			// Get the subsequent children of the node recursively for the number of generations and add them to the subsection.
			if let Some(generations) = generations {
				let children = node.get_children();
				for current_generation in 0..generations {
					for child in children.clone() {
						subsection.append(&mut self.get_subtree(child.get_node_id(), Some(current_generation)).get_nodes());
					}
				}
			} else {
				let children = node.get_children();
				for child in children {
					subsection.append(&mut self.get_subtree(child.get_node_id(), None).get_nodes());
				}
			}
		}

		SubTree {
			nodes: subsection
		}
	}

	/// Add a subsection to the tree.
	///
	/// This method adds a subsection to the tree. The subsection is a list of nodes that are descendants
	/// of the node with the given node id. The subsection is added as children of the node with the
	/// given node id.
	///
	/// # Arguments
	///
	/// * `node_id` - The id of the node to add the subsection to.
	/// * `subtree` - The subsection to add to the tree.
	///
	/// # Example
	///
	/// ```rust
	/// # use tree_ds::prelude::{Node, Tree, SubTree};
	///
	/// let mut tree: Tree<i32, i32> = Tree::new();
	/// let node_id = tree.add_node(Node::new(1, Some(2)), None);
	/// let mut subtree = SubTree::new();
	/// subtree.add_node(Node::new(2, Some(3)), None);
	/// subtree.add_node(Node::new(3, Some(6)), Some(2));
	/// tree.add_subtree(node_id, subtree);
	/// assert_eq!(tree.get_nodes().len(), 3);
	/// ```
	pub fn add_subtree(&mut self, node_id: Q, subtree: SubTree<Q, T>) {
		let node = self.get_node(node_id).unwrap();
		// Get the root node in the subsection and add it as a child of the node.
		let subtree_nodes = subtree.get_nodes();
		let root_node = subtree.get_root_node().unwrap();
		node.add_child(root_node.clone());
		self.nodes.append(&mut subtree_nodes.clone());
	}

	/// Print the tree.
	///
	/// This method prints the tree to the standard output.
	fn print_tree(f: &mut std::fmt::Formatter<'_>, node: &Node<Q, T>, level: usize) -> std::fmt::Result where Q: PartialEq + Eq + Clone + Display, T: PartialEq + Eq + Clone + Display {
		for _ in 0..level {
			write!(f, " ")?;
		}
		writeln!(f, "|-> {}", node)?;
		for child in node.get_children() {
			Tree::print_tree(f, &child, level + 1)?;
		}
		Ok(())
	}
}

impl<Q, T> Default for Tree<Q, T> where Q: PartialEq + Eq + Clone, T: PartialEq + Eq + Clone {
	fn default() -> Self {
		Tree {
			nodes: Vec::new(),
		}
	}
}

impl<Q, T> Display for Tree<Q, T> where Q: PartialEq + Eq + Clone + Display, T: PartialEq + Eq + Clone + Display {
	fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
		if let Some(node) = self.get_root_node() {
			Tree::print_tree(f, &node, 0)?;
		} else {
			let root = self.nodes.first().unwrap();
			Tree::print_tree(f, root, 0)?;
		}
		Ok(())
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	#[test]
	fn test_tree_new() {
		let tree = Tree::<u32, u32>::new();
		assert_eq!(tree.nodes.len(), 0);
	}

	#[test]
	fn test_tree_add_node() {
		let mut tree = Tree::new();
		let node_id = tree.add_node(Node::new(1, Some(2)), None);
		assert_eq!(tree.nodes.len(), 1);
		assert_eq!(node_id, 1);
		let node_id_2 = tree.add_node(Node::new(2, Some(3)), Some(1));
		assert_eq!(tree.nodes.len(), 2);
		assert_eq!(node_id_2, 2);
		let node_2 = tree.get_node(2).unwrap();
		assert_eq!(node_2.get_parent().unwrap().get_node_id(), 1);
	}

	#[test]
	fn test_tree_get_node() {
		let mut tree = Tree::new();
		let node = Node::new(1, Some(2));
		tree.add_node(node.clone(), None);
		assert_eq!(tree.get_node(1), Some(node));
		assert_eq!(tree.get_node(2), None);
	}

	#[test]
	fn test_tree_get_nodes() {
		let mut tree = Tree::new();
		let node = Node::new(1, Some(2));
		tree.add_node(node.clone(), None);
		assert_eq!(tree.get_nodes().len(), 1);
	}

	#[test]
	fn test_tree_remove_node() {
		let mut tree = Tree::new();
		let node = Node::new(1, Some(2));
		tree.add_node(node.clone(), None);
		let node_2 = Node::new(2, Some(3));
		tree.add_node(node_2.clone(), Some(1));
		let node_3 = Node::new(3, Some(6));
		tree.add_node(node_3.clone(), Some(2));
		tree.remove_node(2, NodeRemovalStrategy::RetainChildren);
		assert_eq!(tree.get_nodes().len(), 2);
		let node_4 = Node::new(4, Some(5));
		let node_5 = Node::new(5, Some(12));
		tree.add_node(node_4.clone(), Some(3));
		tree.add_node(node_5.clone(), Some(3));
		tree.remove_node(3, NodeRemovalStrategy::RemoveNodeAndChildren);
		assert_eq!(tree.get_nodes().len(), 1);
	}

	#[test]
	fn test_tree_get_subsection() {
		let mut tree = Tree::new();
		let node = Node::new(1, Some(2));
		tree.add_node(node.clone(), None);
		let node_2 = Node::new(2, Some(3));
		tree.add_node(node_2.clone(), Some(1));
		let node_3 = Node::new(3, Some(6));
		tree.add_node(node_3.clone(), Some(2));
		let node_4 = Node::new(4, Some(5));
		tree.add_node(node_4.clone(), Some(2));
		let node_5 = Node::new(5, Some(6));
		tree.add_node(node_5.clone(), Some(3));
		let subsection = tree.get_subtree(2, None);
		assert_eq!(subsection.get_nodes().len(), 4);
		let subsection = tree.get_subtree(2, Some(0));
		assert_eq!(subsection.get_nodes().len(), 1);
		let subsection = tree.get_subtree(2, Some(1));
		assert_eq!(subsection.get_nodes().len(), 3);
	}

	#[test]
	fn test_tree_add_subsection() {
		let mut tree = Tree::new();
		let node_id = tree.add_node(Node::new(1, Some(2)), None);
		let mut subtree = SubTree::new();
		subtree.add_node(Node::new(2, Some(3)), None);
		subtree.add_node(Node::new(3, Some(6)), Some(2));
		tree.add_subtree(node_id, subtree);
		assert_eq!(tree.get_nodes().len(), 3);
	}

	#[test]
	fn test_tree_display() {
		let mut tree = Tree::new();
		let node = Node::new(1, Some(2));
		tree.add_node(node.clone(), None);
		let node_2 = Node::new(2, Some(3));
		tree.add_node(node_2.clone(), Some(1));
		let node_3 = Node::new(3, Some(6));
		tree.add_node(node_3.clone(), Some(2));
		let node_4 = Node::new(4, Some(5));
		tree.add_node(node_4.clone(), Some(2));
		let node_5 = Node::new(5, Some(6));
		tree.add_node(node_5.clone(), Some(3));
		let expected_str = "|-> Node { Id: 1, Value: 2 }
 |-> Node { Id: 2, Value: 3 }
  |-> Node { Id: 3, Value: 6 }
   |-> Node { Id: 5, Value: 6 }
  |-> Node { Id: 4, Value: 5 }
";
		assert_eq!(tree.to_string(), expected_str);
	}
}