traitgraph_algo/dijkstra/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
use crate::dijkstra::epoch_array_dijkstra_node_weight_array::EpochNodeWeightArray;
use crate::dijkstra::performance_counters::DijkstraPerformanceData;
use std::collections::BinaryHeap;
use std::fmt::Debug;
use std::marker::PhantomData;
use std::ops::Add;
use traitgraph::index::{GraphIndex, NodeIndex};
use traitgraph::interface::{GraphBase, StaticGraph};

mod dijkstra_weight_implementations;

/// Using an epoched array as [NodeWeightArray].
pub mod epoch_array_dijkstra_node_weight_array;
/// Contains the implementation of the [NodeWeightArray] as [hashbrown::HashMap].
#[cfg(feature = "hashbrown_dijkstra_node_weight_array")]
pub mod hashbrown_dijkstra_node_weight_array;

/// Performance counters for Dijkstra's algorithm.
pub mod performance_counters;

/// A Dijkstra implementation with a set of common optimisations.
pub type DefaultDijkstra<Graph, WeightType> = Dijkstra<
    Graph,
    WeightType,
    EpochNodeWeightArray<WeightType>,
    BinaryHeap<std::cmp::Reverse<(WeightType, <Graph as GraphBase>::NodeIndex)>>,
>;

/// A weight-type usable in Dijkstra's algorithm.
pub trait DijkstraWeight: Ord + Add<Output = Self> + Sized + Clone {
    /// The infinity value of this type.
    fn infinity() -> Self;

    /// The zero value of this type.
    fn zero() -> Self;
}

/// Edge data that has a weight usable for shortest path computation.
pub trait DijkstraWeightedEdgeData<WeightType: DijkstraWeight> {
    /// The weight of the edge.
    fn weight(&self) -> WeightType;
}

impl<WeightType: DijkstraWeight + Copy> DijkstraWeightedEdgeData<WeightType> for WeightType {
    #[inline]
    fn weight(&self) -> WeightType {
        *self
    }
}

/// An array to store minimal node weights for Dijkstra's algorithm.
pub trait NodeWeightArray<WeightType> {
    /// Create a new NodeWeightArray of given size.
    fn new(size: usize) -> Self;

    /// Returns the current weight of the given node index.
    fn get(&self, node_index: usize) -> WeightType;

    /// Returns the current weight of the given node index as mutable reference.
    fn get_mut<'this: 'result, 'result>(
        &'this mut self,
        node_index: usize,
    ) -> &'result mut WeightType;

    /// Sets the current weight of the given node index.
    fn set(&mut self, node_index: usize, weight: WeightType);

    /// Resets the weights of all node indices to infinity
    fn clear(&mut self);

    /// Returns the number of nodes whose weight is stored in the data structure.
    fn size(&self) -> usize;
}

impl<WeightType: DijkstraWeight + Copy> NodeWeightArray<WeightType> for Vec<WeightType> {
    fn new(size: usize) -> Self {
        vec![WeightType::infinity(); size]
    }

    #[inline]
    fn get(&self, node_index: usize) -> WeightType {
        self[node_index]
    }

    #[inline]
    fn get_mut<'this: 'result, 'result>(
        &'this mut self,
        node_index: usize,
    ) -> &'result mut WeightType {
        &mut self[node_index]
    }

    #[inline]
    fn set(&mut self, node_index: usize, weight: WeightType) {
        self[node_index] = weight;
    }

    fn clear(&mut self) {
        for entry in self.iter_mut() {
            *entry = WeightType::infinity();
        }
    }

    #[inline]
    fn size(&self) -> usize {
        self.len()
    }
}

/// A data structure that decides whether a given node index is a target of the current Dijkstra search.
pub trait DijkstraTargetMap<Graph: GraphBase> {
    /// Returns true if the given node index is a target of the current Dijkstra search.
    fn is_target(&self, node_index: Graph::NodeIndex) -> bool;
}

impl<Graph: GraphBase> DijkstraTargetMap<Graph> for Vec<bool> {
    fn is_target(&self, node_index: Graph::NodeIndex) -> bool {
        self[node_index.as_usize()]
    }
}

impl<IndexType: Sized + Eq, Graph: GraphBase<NodeIndex = NodeIndex<IndexType>>>
    DijkstraTargetMap<Graph> for NodeIndex<IndexType>
{
    fn is_target(&self, node_index: Graph::NodeIndex) -> bool {
        *self == node_index
    }
}

/// A min-heap used in Dijkstra's shortest path algorithm.
pub trait DijkstraHeap<WeightType, IndexType>: Default {
    /// Insert an index-weight pair into the heap.
    fn insert(&mut self, weight: WeightType, index: IndexType);

    /// Remove the weight and index with the smallest weight from the heap.
    fn remove_min(&mut self) -> Option<(WeightType, IndexType)>;

    /// Remove all entries from the heap.
    fn clear(&mut self);

    /// Returns the number of nodes the heap currently has space for.
    fn size(&mut self) -> usize;
}

impl<WeightType: Ord, IndexType: Ord> DijkstraHeap<WeightType, IndexType>
    for BinaryHeap<std::cmp::Reverse<(WeightType, IndexType)>>
{
    fn insert(&mut self, weight: WeightType, index: IndexType) {
        self.push(std::cmp::Reverse((weight, index)));
    }

    fn remove_min(&mut self) -> Option<(WeightType, IndexType)> {
        self.pop().map(|packed| packed.0)
    }

    fn clear(&mut self) {
        self.clear()
    }

    fn size(&mut self) -> usize {
        self.len()
    }
}

/// The exhaustiveness of an execution of Dijkstra's algorithm.
/// This can be complete, or partial because of reaching performance limits.
///
/// Note that the `max_weight` parameter is not a performance limit, but a limit on the search space.
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum DijkstraExhaustiveness {
    /// The search exhausted the search space.
    Complete,
    /// The search was aborted early because the node weight data structure grew too large.
    PartialNodeWeights,
    /// The search was aborted early because the heap grew too large.
    PartialHeap,
}

/// The final status of an execution of Dijkstra's algorithm.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct DijkstraStatus<DijkstraPerformance: DijkstraPerformanceData> {
    /// The exhaustiveness of the search.
    pub exhaustiveness: DijkstraExhaustiveness,
    /// The performance data collected during execution.
    pub performance_data: DijkstraPerformance,
}

/// Data structure for Dijkstra's shortest path algorithm.
///
/// This variant of Dijkstra's algorithm supports only computing the length of a shortest path, and not the shortest path itself.
/// Therefore it does not need an array of back pointers for each node, saving a bit of memory.
pub struct Dijkstra<
    Graph: GraphBase,
    WeightType: DijkstraWeight,
    NodeWeights: NodeWeightArray<WeightType>,
    Heap: DijkstraHeap<WeightType, Graph::NodeIndex>,
> {
    heap: Heap,
    // back_pointers: Vec<Graph::OptionalNodeIndex>,
    node_weights: NodeWeights,
    graph: PhantomData<Graph>,
    _weight_type_phantom: PhantomData<WeightType>,
}

impl<
        WeightType: DijkstraWeight + Eq + Debug,
        EdgeData: DijkstraWeightedEdgeData<WeightType>,
        Graph: StaticGraph<EdgeData = EdgeData>,
        NodeWeights: NodeWeightArray<WeightType>,
        Heap: DijkstraHeap<WeightType, Graph::NodeIndex>,
    > Dijkstra<Graph, WeightType, NodeWeights, Heap>
{
    /// Create the data structures for the given graph.
    pub fn new(graph: &Graph) -> Self {
        Self {
            heap: Default::default(),
            // back_pointers: vec![Default::default(); graph.node_count()],
            node_weights: NodeWeights::new(graph.node_count()),
            graph: Default::default(),
            _weight_type_phantom: Default::default(),
        }
    }

    /// Compute the shortest paths from source to all targets, with given maximum weight.
    ///
    /// **max_node_weight_data_size:** the maximum number of nodes for which a weight can be stored before the search aborts.
    #[inline(never)]
    #[allow(clippy::too_many_arguments)]
    pub fn shortest_path_lens<
        TargetMap: DijkstraTargetMap<Graph>,
        DijkstraPerformance: DijkstraPerformanceData,
    >(
        &mut self,
        graph: &Graph,
        source: Graph::NodeIndex,
        targets: &TargetMap,
        target_amount: usize,
        max_weight: WeightType,
        forbid_source_target: bool,
        distances: &mut Vec<(Graph::NodeIndex, WeightType)>,
        max_node_weight_data_size: usize,
        max_heap_data_size: usize,
        mut performance_data: DijkstraPerformance,
    ) -> DijkstraStatus<DijkstraPerformance> {
        //println!("Shortest path lens of {}", source.as_usize());
        self.heap.insert(WeightType::zero(), source);
        //self.back_pointers[source.as_usize()] = source.into();
        self.node_weights.set(source.as_usize(), WeightType::zero());
        distances.clear();
        let mut exhaustiveness = DijkstraExhaustiveness::Complete;

        //let max_iterations = self.graph.node_count();
        while let Some((weight, node_index)) = self.heap.remove_min() {
            performance_data.add_iteration();
            //println!("Finalising node {}", node_index.as_usize());
            // Check if the node was already processed
            let actual_weight = self.node_weights.get(node_index.as_usize());
            if actual_weight < weight {
                performance_data.add_unnecessary_heap_element();
                continue;
            }
            debug_assert_eq!(actual_weight, weight);

            // Check if we are still lower than or equal to max_weight
            if weight > max_weight {
                //println!("Aborting early by max_weight after {}/{} iterations of which {} are unnecessary", iterations, max_iterations, unnecessary_iterations);
                break;
            }

            // Check if we found a target
            if targets.is_target(node_index) && (!forbid_source_target || node_index != source) {
                distances.push((node_index, weight.clone()));

                // Check if we already found all paths
                if distances.len() == target_amount {
                    //println!("Aborting early after finding all targets");
                    break;
                }
            }

            // Relax neighbors
            for out_neighbor in graph.out_neighbors(node_index) {
                let new_neighbor_weight =
                    weight.clone() + graph.edge_data(out_neighbor.edge_id).weight();
                let neighbor_weight = self.node_weights.get_mut(out_neighbor.node_id.as_usize());
                if new_neighbor_weight < *neighbor_weight {
                    *neighbor_weight = new_neighbor_weight.clone();
                    self.heap.insert(new_neighbor_weight, out_neighbor.node_id);
                    //self.back_pointers[out_neighbor.node_id.as_usize()] = node_index.into();
                }
            }

            performance_data.record_heap_size(self.heap.size());
            performance_data.record_distance_array_size(self.node_weights.size());

            if self.node_weights.size() > max_node_weight_data_size {
                exhaustiveness = DijkstraExhaustiveness::PartialNodeWeights;
                break;
            } else if self.heap.size() > max_heap_data_size {
                exhaustiveness = DijkstraExhaustiveness::PartialHeap;
                break;
            }
        }

        self.heap.clear();
        /*for back_pointer in &mut self.back_pointers {
            *back_pointer = Default::default();
        }*/
        self.node_weights.clear();
        performance_data.finish_dijkstra();
        DijkstraStatus {
            exhaustiveness,
            performance_data,
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::dijkstra::performance_counters::NoopDijkstraPerformanceCounter;
    use crate::dijkstra::DefaultDijkstra;
    use traitgraph::implementation::petgraph_impl::PetGraph;
    use traitgraph::interface::MutableGraphContainer;

    #[test]
    fn test_dijkstra_simple() {
        let mut graph = PetGraph::new();
        let n1 = graph.add_node(());
        let n2 = graph.add_node(());
        let n3 = graph.add_node(());
        graph.add_edge(n1, n2, 2);
        graph.add_edge(n2, n3, 2);
        graph.add_edge(n1, n3, 5);

        let mut dijkstra = DefaultDijkstra::new(&graph);
        let mut distances = Vec::new();
        let mut targets = vec![false, false, true];
        dijkstra.shortest_path_lens(
            &graph,
            n1,
            &targets,
            1,
            6,
            false,
            &mut distances,
            usize::MAX,
            usize::MAX,
            NoopDijkstraPerformanceCounter,
        );
        debug_assert_eq!(distances, vec![(n3, 4)]);

        dijkstra.shortest_path_lens(
            &graph,
            n1,
            &targets,
            1,
            6,
            false,
            &mut distances,
            usize::MAX,
            usize::MAX,
            NoopDijkstraPerformanceCounter,
        );
        debug_assert_eq!(distances, vec![(n3, 4)]);

        dijkstra.shortest_path_lens(
            &graph,
            n2,
            &targets,
            1,
            6,
            false,
            &mut distances,
            usize::MAX,
            usize::MAX,
            NoopDijkstraPerformanceCounter,
        );
        debug_assert_eq!(distances, vec![(n3, 2)]);

        dijkstra.shortest_path_lens(
            &graph,
            n3,
            &targets,
            1,
            6,
            false,
            &mut distances,
            usize::MAX,
            usize::MAX,
            NoopDijkstraPerformanceCounter,
        );
        debug_assert_eq!(distances, vec![(n3, 0)]);

        targets = vec![false, true, false];
        dijkstra.shortest_path_lens(
            &graph,
            n3,
            &targets,
            1,
            6,
            false,
            &mut distances,
            usize::MAX,
            usize::MAX,
            NoopDijkstraPerformanceCounter,
        );
        debug_assert_eq!(distances, vec![]);
    }

    #[test]
    fn test_dijkstra_cycle() {
        let mut graph = PetGraph::new();
        let n1 = graph.add_node(());
        let n2 = graph.add_node(());
        let n3 = graph.add_node(());
        graph.add_edge(n1, n2, 2);
        graph.add_edge(n2, n3, 2);
        graph.add_edge(n3, n1, 5);

        let mut dijkstra = DefaultDijkstra::new(&graph);
        let mut distances = Vec::new();
        let targets = vec![false, false, true];
        dijkstra.shortest_path_lens(
            &graph,
            n1,
            &targets,
            1,
            6,
            false,
            &mut distances,
            usize::MAX,
            usize::MAX,
            NoopDijkstraPerformanceCounter,
        );
        debug_assert_eq!(distances, vec![(n3, 4)]);
    }
}